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1.

A Support Architecture for
Reliable Distributed Systems

Introduction

The Clouds Project at Georgia Tech is conducting research aimed

at building a reliable distributed operating system. The primary
objectives of the Clouds operating system are:
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7]

The operating systems will be distributed over several sites. The
sites will have a fair degree of autonomity. Yet the distributed
system should work as an integrated system. Thus the system
should support location independency for data, users and
processes.

Reliability is a key requirement. Large distributed systems use
significant number of hardware components and communication
interfaces, all of which are prone to failures. The system should
be able to function normally even with several failed components.

The processing environment should guard against both hardware and
software failures. The permanent data stored in the system should
be consistent.

Distributed systems often have dynamic configurations. That is,
newer hardware gets added, or faulty hardware is removed. The
system function should not be hampered by such maintainance
chores. Thus the system should be dynamically reconfigurable.

The system should be capable of monitoring itself. This encom-
passes hardware monitoring for keeping track of hardware failures
as well as monitoring key software resources (for example dae-
mons, network servers, and so on.) On detection of failure the
system should be able to self-heal (restart daemons) or self-
reconfigure (eliminate faulty sites).

The users should be shielded from both the configuration of the
system (site independence) as well as its failure modes. For
example, if the site a user is comnected to fails, he should be
transferred to an active site transparently.

Many of the above functions can be implemented on conventional
systems, but would make the system extremely slow. Thus effi-
ciency is an important design criteria.

The above requirements can be handled by a distributed system and

have been designed into the Clouds operating system. Most of the func-
tions have been designed into the kernel of the system, without making
the Kkernel too complex, bulky or inefficient. The design philosophies
adopted for the Clouds operating system are:
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An object-based, passive system, paradigm is used as the basic
architecture. All system functions, data, user programs and
resources are encapsulated as passive objects. The objects can be
invoked at appropriate entry points by processes.

The objects in Clouds represent nearly everything the system has
to offer. The site independence philosophy is implemented by
making the object name space (system names) flat and site
independent. When a process on any machine invokes an object
located anywhere, no site names are used. Hence the 1location of
any particular object is unknown to a process.

Reliability is achieved through two techniques. One of them is
the action and recovery concept. The action mechanisms are sup-
ported at the kernel level. Actions are atomic units of work. Any
unfinished or failed action is recovered and has no effect until
it completes. The recovery mechanisms are supported inside every
object an action touches.

Reliability is further extended by the self monitoring and self
reconfiguration subsystems. This is a set of monitoring processes
that use "probes" to keep track of all key system resources, both
hardware and software. On detection of failed or flaky com-
ponents, the monitoring system invokes the reconfiguration system
which rectifies or eliminates (if possible) the faulty com-
ponents, and initiates recovery of affected actions. The monitor-
ing and reconfiguration subsystems are also monitored by the mon-
jtoring system.

The consistency requirements of the data are handled by the
recovery mechanisms and Dby concurrency control techniques. The
concurrency control is handled by synchronization paradigms that
are an integral part of the object handling primitives. The syn-
chronization of processes executing in an object is handled
automatically by semaphores that are a part of the object. This
gives rise to a two-phase locking algorithm that is supported by
the kernel as a default. The object programmer has the choice of
overriding these controls and use custom built concurrency con-
trol, depending upon the application. It is also possible to turn
off the default recovery and commit strategies.

Efficiency has been of concern. The object invocation, recovery
and synchronization are handled by the kernel. It turns out that
these can be done at the kernel 1level without much overhead.
Since the entire Clouds design is primarily based on object mani-
pulations, invocation and synchronization will be the most used
operations. Implementing them at the kernel level will result in
an efficient system.

The site independence at the user level is handled in part by
using intelligent terminals. The user terminals are not hard-
wired into any machine or site, but are on an ethernet, accessi-
ble by any site. Each user session is, of course, handled by one




particular site, but any failure causing the controlling site to
be unaccessible causes the user to be transferred to another
site. This is handled cooperatively by the user terminal and the
other sites. Thus the user terminals are actually intelligent
microprocesser systems on the Clouds ethernet. In addition to
cooperation with the Clouds network, the user terminals run "Bub-
bles'", a multiwindowing, user-friendly interface to Clouds.

2. Progress Report

The following is a brief report of the current status of the
implementation of Clouds.

2.1. Equipment

The test equipment for implementing Clouds was funded by the
National Science Foundation and has arrived. Three VAX/750 computers
interconnected by a ethernet was installed in November 1984. They have
been heavily used to develop the Clouds kernel and allied software
described later. Three IBM-PC/XT computers, arrived in July 1985 and
are being used to develop the intelligent terminal interface to
Clouds. One IBM-PC/AT is scheduled to arrive soon and will be used as

the primary development system for Bubbles and the ethernet handling
code for the terminal interface.

2.2. Clouds Kernel Design

The kernel design has been through several design phases and is
nearly complete. The design effort has produced a cohesive set of
implementation guides to the entire Clouds kernel.

The current designs are based on assumptions about efficiency and
ease of implementation that seem to be intuitively clear at this time.
We may have to reiterate some design decisions and modify some stra-

tegies after more hard data is available from the implementation
experience.

2.2.1. Kernel Implementation The Clouds kernel consists of several
major subsystems: the object manager, which is responsible for mapping
objects into virtual memory and invoking object operations (including
the initiation of remote object requests); the process manager, which
controls the slave process pool available on each node in a Clouds
system and also supplies primitives for synchronization and process
dispatch; the storage manager, which provides permanent storage for
object data and paging storage for the virtual memory system; the com-
munications manager, which 1is responsible for controlling inter-
machine communications (currently via the ethernet); and the action
manager, which is responsible for managing action events. The subsys-
tems have been in various stages of completion, but have recently been
integrated so a fairly complete, running version of the Clouds kernel
exists. The current status of each of the subsystems is described

below. For more details, see the attached technical reports ([Pitt85]
and [Spaf84]).




4

2.2.1.1. Object Management The object management subsystem is
almost completely coded and substantial sections have been tested. In
particular, a primitive remote procedure call (RPC) mechanism has been
implemented and tested. The complete RPC mechanism implementation
awaits the implementation of the action management subsystem. Object
mapping is implemented and is being tested with the virtual memory
support provided by the storage management subsystem. Page fault han-
dling will be done in tandem by the object manager and the storage
manager. After the original fault is caught by the system, the object
manager determines where the fault occurred (in a client object, in
system space, or in a per process space) and makes a storage manage-
ment call passing that information. Storage management is then
responsible for selecting a physical page (through a call provided by
the virtual memory system and filling that physical page from the
proper block on secondary storage.

The object invocation routines are being refined and implemented.
Object and storage management are required to interact heavily to pro-
cess an object operation call. Object management must first determine
that the operation call is valid. It then initiates a search (possi-
bly a network wide search) for the object. The storage management
subsystem 1is responsible for determining whether the object exists on
its local node and for activating the disk segment for the object if
the object is found. Object management resumes control to initiate
the operation call. The object management interface also provides the

hooks necessary for the eventual presence of the action management
subsystem.

Because of the cooperation required between object, storage, and
action management, several iteration of the interface design were made
before finally settling with the current design. It is felt that the

current design meets all the requirements of the various subsystems
involved. -

The object manager and action manager normally supply certain
special object operations, such as ''create instance", '"commit action',
and 'destroy action.'" Clouds programmers are able to reprogram these
operations, so that in addition to performing necessary functions, the
operations to the particular initializations, customized recovery
operations, and cleanup that are specified. The object and action
manager provide this support as part of the kernel interface, which

can be accessed through the runtime system used by the Aeolus program-
ming language.

2-2.1.2. Process Management The process manager is completely coded

and tested. It provides a very rich set of synchronization primi-
tives, which include semaphores, read/write locks, and general event
mechanisms. Facilities for blocking with a time-out value are

included. Code for the initialization of the slave process pool is
running, as it that for dispatching processes. Slave processes are
created at system initialization and are available for use as requests
arrive, This accelerates the creation of processes for requests such
as RPC's. The process management subsystem supports a primitive




round-robin scheduler with five priority levels.

2.2.1.3. Communication Management The communications management
subsystem currently consists of the ethernet driver and associated
software. This code has been tested and integrated into the Clouds
kernel. The driver supports communications protocols not only for
Clouds machines but also for machines running Unix 4.2bsd. Support
for communication with Unix systems was implemented because it pro-
vides several possibilities supporting further development of ~ the
Clouds system. One such possibility is the development of a virtual
disk for the Clouds kernel. Clouds kernel device requests to the
storage manager could actually be handled by a disk running under a
Unix system using the Clouds-Unix protocol on the Ethernet. This
would provide either additional devices (very quickly, since the same
interface at the Clouds end could be re-used) and also a facility for
dumping status information for offline debugging. The communications
subsystem recently was interfaced with the object management subsystem
to provide a primitive working RPC mechanisn.

2.2.1.4. Storage Management The storage management subsystem of the
kernel consists of three classes of objects: devices, partitions, and
segments. These object classes contain the structures and algorithms
required to provide recoverable object data under the Clouds kernel.
The subsystem is primarily concerned with the storage of on secondary
storage devices, but is also necessarily involved in the management of
virtual memory and action/object management.

There is a working device object (for the RL02 removable storage
disk), that supports not only the conventional device operations (read
and writes), but also provides a mechanism whereby the storage manager
can insure that writes to devices performed by actions are done before
the action completes. System failures will not catch object data in
an inconsistent state. By having this support at such a low level, the
storage manager relieves action management of some of its burden. In
fact, the storage manager provides action management with a few simple
calls that perform all the functions required to provide recoverable
transfers of data to secondary storage.

The storage available on the RL02 device is not extensive (10
megabytes per pack) and the RL02 is not meant to be the primary drive
for the Clouds system. However, it does provide a suitable testing
device. A driver object is under development for another DEC drive,
the RA81l. This is a more sophisticated and larger drive (456 mega-
bytes, fixed medium) than the RL02 and consequently the implementation
of the RA81 object has been more complex than that for the RLO1. The

device object for this device in partially implemented and is being
tested incrementally.

It should be noted that the design and development of the various
devices discussed (and indeed those that will come later) have all
been done using a standard interface to the Clouds system. This will
allow us to bring new classes of devices onto the Clouds system with
little difficulty. The only difference between the RLO2 device driver



and the one being developed for the RA81 is that the RL02 object was
written assuming only one such device existed (for simplicity). The
RA81 object is being written for multiple drives per controller which
will require some structural changes for the Kkernel, which have
already been designed.

The device objects are being implemented with the idea that dev-
ices may be dynamically added to, removed from, and initialized on a
running Clouds system. Currently, support is provided to allow opera-
tors to manually mount, unmount, or initialize devices, but further
work could be done to automate this process.

The partition object is almost complete and running. Partitions
can be created and removed from a device (dynamically, although sup-
port for this is not as clean as would be 1liked), read and write

operations on partition blocks are available, storage may be allocated
and deallocated from the partition, and the partition directory may
add, remove, or locate items on the partition. The major component
missing from the partition object is the partition activate call.
This call brings certain partition structures into virtual memory and
performs consistency checks on the partition data. Also the partition
activation call initiates the action management cleanup that is per-
formed by the storage manager. This processing 1is currently being
integrated into the activation call.

The code for segment object is undergoing testing and final
implementation. The segment object provides an interface to the
storage management subsystem for the rest of the kernel. Primarily,
the interface is through the abstraction of the segment type. The
segment type is generally (though not always) simply a convenient
alternate view of some client or system object (as a sequence of unin-
terpretted bytes). This allows the kernel to handle the various types
of objects in a uniform manner. Coding necessary for handling seg-
ment level reads and writes and for handling page faults (in coopera-
tion with object management) is complete and is in testing.

The segment object also provides the recoverability of object
data. It provides the action management subsystem with a set of rou-
tines which transfer the data from virtual memory to secondary storage
in a consistent manner. When invoked by the action management subsys-
tem, the routines determine which parts of an object were modified by
an action, and how to transfer the modified portions to secondary
storage. The algorithms that do this are detailed in [Pitts85], along
with an overall description of the storage manager. The algorithms
described in the referenced report use the technique of shadowing
current versions of a segment, making the shadow versions permanent on
action commit. The data recovery routines are still under-going
implementation at present. Since action management will not be avail-
able before the completion of the storage manager, testing of the
recovery features of storage management will be done by simulating
requests by the action management system.




2.2.1.5. Action Mapnagement The design of action management is com-
plete. It includes several areas, but primarily it is concerned with
the control of action events in the Clouds system. Other features
included in the action management design are a simple algorithm for
global object searches, the use of a global, kernel database. a time
driven orphan detection mechanism (developed by Martin McKendry and
Maurice Herlihy at Carnegie-Mellon University), a design for a global
Lamport clock for the Clouds system which supports the orphan detec-
tion mechanism, and a design for a generalized 1locking facility for
programming objects. Although coding has not started, the design
includes enough implementation details so that this effort can proceed
quickly.

The orphan detection algorithm mentioned above is quite different
than that originally described in [Allc83a]. The new orphan detection
mechanism attaches two time values to all action requests, in addition
to the usual time-out value for deadlock recovery. These values are a
quiesce time and a release time. After the quiesce time for an action
has passed that action can initiate no further requests. The release
time indicates the earliest time an action can release any locks that
it hold. The release time is always greater than the quiesce time.
Orphan are prevented from producing erroneous results by the eventual
passing cf their quiesce times. Generally, the period until an
action's quiesce time is not long, requiring a refresh phase which
increases first the release time and then the quiesce time of the
action. This allows the action to continue work.

Action management's lock facility allows the creation of not only
simple read/write locks, but also locks with more complex compatibil-
ity modes. For example, it is possible to create a lock with more
than two modes and then specify how the modes conflict. In fact, one
could create read/write locks in this fashion, but it is expected that
the read/write 1locking style will be popular enough to justify a
separate implementation. Also, locks need not be create for a
specific instance of a structure, but may be defined over a whole
domain of such structures. The data (a file, for example) need not
exist at the time the lock is taken. This flexible locking mechanism,
along with the redefinition of special object operations, allows the
Clouds programmer to customize the recovery of the objects and action

that are developed in addition to having available the default system
recovery.

The search algorithm, as mentioned, is simple but attempts to do
as much as possible to limit searches for objects. This is because in
order maintain the location independence of objects from the sites on
which they reside, the 1local object camnot determine the where an
object is by examining the capability for the object. The object may
be 1local or remote; invocations should be handled transparently. As
the number of nodes in a Clouds system increases, the effort and time
spent searching for an object could become quite significant. There-
fore, information is kept in a global state database which aids in the
search. The information in this low-level database is not guaranteed
to be exact or complete. It does provide some hint of where the




object might be by maintaining several sorts of information; the last
place an object was found, where the object was moved by the system,
or even vwhere the device on which the object last resided was moved.
Always, as a heuristic, the node whose name is contained in the birth-
place of the object is a high priority.

The global state database was mentioned as a source for clues for
the object search, but it is actually more than that. Many types of
system information is placed in the database, then to be propagated
through the network using the algorithms described [Allc83a]. In par-
ticular, action state information, workloads, uplists, and other sys-
tem imformation can be propagated in this manner.

2.2.2. Compiler Development

The systems programming language for Clouds implementation is
Aeolus. Currently all development is being done on a VAX running Unix
4.2bsd, using "C". This is pending the full implementation and testing
of the Aeolus Compiler. Once the compiler is implemented, and it
interfaces to the Clouds system (the compiler generates objects),
further development will use Aeolus.

The compiler implementation for Aeolus is currently underway. The
Amsterdam Compiler Kit (ACK) is being used to generate code for both
the Clouds system running on VAXen, and the Bubbles system running on
8088/8086 Dbased systems (IBM-PC/XT/AT). Work on semantic routines for
Aeolus is proceeding in parallel with the development of intermediate

code for ACK. This work is being done in Pastel, an extended Pascal
dialect.

2.3. Fault Tolerance and Probes

Use of probes in monitoring and fault tolerance is being studied.
Probes are somewhat like messages, but unlike messages they are han-
dled by traps handlers in processes and special probe handlers in
objects. Thus probes can be sent to both passive as well as active
entities. This gives rise to a powerful paradigm that is useful for a
lot of activities, from monitoring, status enquiries to emergency mes-
sages. An application of probes to fault tolerant scheduling has been
discussed in [McKe84c].

2.4. User Interfaces

The Clouds user interfaces are at several levels. The Clouds sys-
tem runs a shell that allows hierarchical name spaces and common shell
functions as the service routine for each user. The interface to this
shell 1is via the intelligent terminals. This part of Clouds is still
under the design phases.

The Human Factors group at Georgia Tech is 1looking at advanced
user interfaces which will use the properties of '"transitionality'" to
handle novice and advanced users at their own 1levels of sophistica-
tion. The transitional wuser interfaces will be built both at the




intelligent terminal level as well as the Clouds shell level.
2.5. Publications

The publications that have resulted from this research have been
referenced below.
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Abstract: The Clouds project is research directed towards producing a reliable distributed
computing system. The initial goal of the project is to produce a kernel which provides a reliable
environment with which a distributed operating system can be built. The Clouds kernel consists
of a set of replicated sub-kernels, each of which runs on a machine in the Clouds system. Each
sub-kernel is responsible for the management of resources on its machine; the sub-kernel

components communicate to provide the cooperation necessary to meld the various machines
into one kernel. :

This report documents a portion of that research, namely, the implementation of a kernel-level
storage manager that supports reliability. The storage manager is a part of each sub-kernel and
maintains the secondary storage residing at each machine in our distributed system. In addition
to providing the usual data transfer services, the storage manager ensures that data being stored
survives machine and system crashes, and that the secondary storage of a failed machine is
recovered (made consistent) automatically when the machine is restarted. Since the storage
manager is a part of the Clouds kemnel, efficiency of operation is also a concern. We wish to
reduce the overhead required to ensure the recoverability of secondary storage as much as
possible, while adhering to the design goals associated with the storage manager.

® This research is funded in part by NASA grant NAG-1-430 and bye NSF grant DCR-8316590
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1. Background

In this section we present an overview of the Clouds kernel and discuss the philosophy behind
its development. The Clouds approach to providing reliability is through the use of actions and
objects, as discussed in (M, 21, B, (4. The Clouds kernel provides higher level applications such
as operating systems with three primitives: processes, actions, and objects. An object is a
typed collection of data which is manipulated by a set of operations. The data structures and the
set of operations for the object define its type. An action is the unit of (fault tolerant) work in
the Clouds system. Actions guarantee failure atomicity of the operations performed by them:
the operation appears to either occur totally or not at all. Processes in Clouds are similar to
processes found in other systems, and represent a thread of execution and control. Actions and
objects are passive, waiting for a process to activate them. The model of computation for the
Clouds system is that of a set of processes making operation calls on objects to perform services
required by the system. In order to make these services reliable, the object operation calls are
performed under the auspices of an action.

Action/
Object Action/

Manager Object

Manager Storage

Storage Manager

Manager Comm.

Manager
Process /
Manager

Comm.

¢

Manager

Process

Manager

Figure 1. Architecture of the Clouds kernel

Clouds actions provide a mechanism that allows the programmer to violate the conventional
notions of correctness znidl consistency, as defined by strict serializability, when programming
reliable objects. The programmer can use any semantic knowledge about the intended
activation of an object to program a customized method for providing the recovery of the object.
This is done by the programmer writing new abort and cammit operations for the object, which
indicate how the object data must be recovered. By allowing object recovery to be customized
in this way, we hope to provide increased concurrency in the execution of services compared to
using the usual recovery and synchronization rules (i.e., serializability), and so improve the
performance of the Clouds system.
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The Clouds kernel has four major components: the object/action manager(s), the process
manager, the communications manager, and the storage manager. Figure 1 depicts the
architecture of the Clouds kemnel for a system consisting of two nodes. The kernel is made up
of two sub-kernels, one of which resides on each node that is part of the Clouds system. Each
of the components of the kernel can communicate with its corresponding components on other
nodes through the proper protocols.

The object manager is responsible for providing the object operation invocation mechanism.
Each object is named by a unique capability comprised of a system name (called a sysnamne) and
a series of rights which indicate which object operations are available to the invoking process.
The object manager checks the capability provided by the operation call, locates the desired
object instance, formats and maps the operation parameters, and activates the object. The
object manager is involved with handling action bookkeeping, as necessary. The object
manager also hides references to objects on other machines by providing a remote procedure
call mechanism (RPC). The object manager makes an RPC look exactly like a local operation
call.

The process manager creates, destroys, and dispatches processes. It manages local processes, as
well as slave processes started to handle RPC’s from other machines. The process manager is
not a global scheduler; it simply manages local resources.

The communications manager is responsible for the transmission of information among the
machines in the Clouds network. It maintains information about the connectivity of the
network, the status of the various lines to which each machine is connected, and queues of
outgoing and incoming data. The data that goes through the communications manager is
uninterpreted — it might be an RPC or a part of a file that is being transmitted across the
network. More detailed descriptions of the object, process, and communications managers can
be found in (% and (1,

The function of the storage manager was described above. It coordinates with the object
manager to provide the correct commits and aborts of actions on object data residing on
secondary storage. In the remainder of this report, storage will refer to the secondary storage
(disk, tape, etc.) attached to a machine. Memory will refer to the main memory of the
machine.
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2. Hardware and Environment

The Clouds kernel is currently under implementation on three VAX 11/750’s.! The machines
have eight megabytes of main memory altogether and are interconnected via a 10 Mb/sec
Ethernet. Also connected to the Ethernet are a set of IBM-PC’s, which will serve as intelligent
work stations. Future versions of the system may be connected by multiple networks of varying
bandwidth.
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Figure 2. Clouds hardware configuration

Our prototype will have three types of storage devices available for the kernel. There may be a
tape drive on one machine that will be used to archive data and perform conventional system
backups. Each machine will have a RLO2 removable pack disk drive, in which each pack
provides 10 Mb of storage. We expect that RLO2 media will be used as short term archive
devices and boot devices. Finally, each system will also have up to four RA81 disk drives.
Each such drive has a permanently mounted pack providing 456 megabytes of storage
(unformatted). The RAS81 drives are dual-ported; two controllers may be coupled to the drive
simultaneously. However, the drive is on-line to only one of the controllers at any time. The
switching of the device between controllers is done primarily by a front panel switch, but
switching can be done under program control. The disks are controlled by UDASO0 controllers

1. VAXis a trademark of the Digital Equipment Corporation
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which use DEC’s Mass Storage Control Protocol (MSCP). These devices are expected to

provide the primary object storage for the Clouds system. Figure 2 shows the Clouds prototype
system.
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3. The Design Approach

The Clouds kernel provides user-defined objects® as the building blocks (along with atomic
actions) of a reliable distributed system. The arguments for using an object-oriented anroach
in general, and as used in the Clouds project in particular, are presented elsewhere Ul and ¥
and we will not repeat those rationales here. We feel that the kernel, in addition to supporting
objects for higher levels of software, should also reflect the use of an object-oriented
methodology in its design and implementation. To this end we have identified basic
components of the kernel and isolated them as modules that are accessible only through a set of
procedures defined for each module. These objects are then used to form the major systems of
the kernel: the object manager, the process manager, the communications manager, and the
storage manager.

We attempt to present kernel objects as typical Clouds objects that provide (restricted) access to
functions and services provided by the kernel. However, there are differences between the
objects that form the kernel and those that are supported by the kernel. The first such
difference is in the implementation. User-defined objects will be created by users with an
object-oriented language, such as Aeolus (8!, ). This language enforces the use of an object-
oriented methodology. Our kernel objects are currently implemented as C modules and most
of the responsibility for adhering to the philosophy of object-oriented design is the responsibility
of the programmer, not the programming language. Still, we believe the careful use of this
object methodology despite the lack of support in the language provides benefits in the
implementation and later maintenance of the kemel. It also may make the later conversion of
the kernel to some other object-oriented langunage, such as Aeolus, more convenient.

The other difference reflects our concern for the efficiency of kernel functions and the operation
invocation mechanism for objects. Many of the functions of the kernel are time-critical, or
because of their frequent use require very efficient implementations. The operation invocation
mechanism has overhead that we suspect cannot be afforded in these situations. Therefore, "
operation calls on kernel objects are handled differently than operation calls on user-defined
objects. Calls on kernel operations may be performed as ordinary procedure calls or even as
simple transfers to blocks of code. However, the appearance outside the kernel and the overall
philosophy is that of an object-oriented kernel.

Some kermnel objects are not generally available outside the kernel. For example, this is the case
with the objects comprising the storage manager. Operating system code may occasionally
require direct access to secondary storage, but it is hoped that for the most part the abstractions
provided by objects will suffice. '

The storage manager is based on three sets of objects: device objects, partition objects, and
segment objects. Each of these objects manages the same actual item (secondary storage), but
provides different abstractions. The device objects provide conventional device-level access to
secondary storage. Partition objects allow devices to be sectioned logically according to the
intended use of the storage on a device. Segment objects are the secondary storage extensions
of the segment type provided by the kernel. Recoverable permanent objects are implemented at
the level of segment objects.

The remainder of this report outlines a design for a storage manager for the Clouds kemel. It
covers the important aspects of the structure and function of the storage manager, and discusses
how the storage manager is used by and uses other parts of the kernel. The next three sections
deal with the design and implementation of the device object, the partition object and the
segment object. Those sections specify the data structures required plus the interface to the

2. Also referred to as client objects.
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objects. Section 7 then covers how these objects are used by the kernel. In that section we
discuss some of the issues related to the reliability of the storage manager and its relationship to
the rest of the kernel. Section 8 contains a summary of this report, and a few conclusions and
reflections on the storage manager.
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4. Device Objects

As with conventional systems, the storage manager for the Clouds kernel provides a device
level interface to secondary storage. This level of interaction with secondary storage is almost
exclusively the province of the Clouds kernel. In fact, even within the kernel, most accesses to
secondary storage are performed at some other (higher) level; only the storage manager makes
frequent use of device objects.

4.1 Device Media

The storage manager views devices as two parts: the device itself and the medium currently
being used by the device. This viewpoint is moot for fixed media disks, but for other forms of
secondary storage, such as tape and removable disk storage, it provides additional flexibility in
the configuration of a system. This separation is complete; a sysname exists not only for each
device in use on a system, but also for each medium. However, in many cases the distinction
between accessing specific media and accessing devices is not important, so we wish to hide this
separation. Therefore, the storage manager provides a mechanism for binding a medium to a
device.

Bindings between media and devices are generally performed at the initialization of the system
and involve the association of device and medium. Binding a medium to a device may also
involve the formatting of the medium. In this latter case, a new sysname is generated for the
medium. This formatting or initialization of a medium will destroy any previous information
that existed on the medium. The old sysname will no longer give access to any medium. The
formatting of a blank or obsolete medium includes initializing the tables and structures that the
storage manager requires. These structures are discussed in section 2.1.

In other cases, an existing medium is bound to a device. An existing medium is one which has a
sysname and is formatted. The binding will involve the reading of the sysname from the
medium and comparing it with the sysname passed to the storage manager. The binding will
take place only if a match occurs. We are not attempting to address security issues with this
design. Our interest is to provide flexibility, while maintaining some control over what is
accessible. The use of sysnames to access media provides this control.

Once a medium has been bound to-a device, any reference to the device refers to the bound
medium. The usual sort of device calls then need only refer to the device. This device-medium
binding stays in effect until it is explicitly broken by the storage manager.

In addition to setting up this correspondence between device and medium, this binding also
initializes an instance of a storage object in memory. In particular, critical tables and other
structures required by the device are brought into system memory. We will now look at the
data requirements of device objects.

4.2 Device Object Structures

The storage on a medium is presented as a sequence of 512-byte blocks that are addressed by
offsets from some fixed block. The offset used to address a block is called a device block
number (DBN). As we shall see in section 5, this storage can be subdivided into partitions,
allowing the storage on a device to be apportioned for policy reasons. At the device level,
though, the storage manager deals only with a contiguous string of blocks; partition bo e ~ries
are not visible.

The device object is responsible for the transfer of data between secondary storage and
memory. The device requires two tables in order to function. The first such structure is the
media header. This table contains basic information about the medium and the device using it.
This information includes the medium and device sysnames, the amount of available storage on
the medium, and specifications for the device to which the medium is bound.
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The other major structure is the index table. The index table describes the partitions that exist
on this device. This will include information such as the location, extent, and type. The
partition table is 16 entries long. Partitions are discussed in section 5.

The medium header and index table must be resistant to failures — in particular, device failures
such as head crashes. If the index table is destroyed by a head crash, for instance, we lose
access to the partitions on that medium. We therefore provide copies of the tables, placing the
copies on different cylinders in order to minimize the risk from multi-sector failures. The
alternate copies will be located in known positions based on some computable function. We do
not anticipate problems as far as maintaining the consistency of the slave and master versions of
the table is concerned, since the tables are infrequently modified and any such modifications are
generally done during the system initialization.

In addition, the device objects will maintain a structure in memory called a flush table. The use
of this table is discussed in section 7, but briefly, the flush table allows a device to associate an
action sysname with a set of requests. This supports the commit operation performed on
recoverable objects. Some devices may require the device object to provide bad sector
recovery. Objects written for these devices will have to maintain a bad sector table on disk.
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Figure 3. The system device table and other device object structures

The device object uses one other structure, the system device table. The system device table is
not a part of the device object proper, but is actually the mechanism for managing the various
instances of the device objects. This table lists all secondary storage devices that are active on
the local machine. The device table entries contain pointers to device and medium sysnames,
status variables for the device, device registers, and entry points into the operations for the
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device object. Figure 3 shows a device object pointed to by one entry from the system device
table.

4.3 Device Object Calls

The device object calls deal with the transfer of information to and from the device and with the
relationship of the device to its medium. This allows for devices switching the physical medium
used for storage in a uniform way. Device and media sysnames are generally needed by those
calls setting up a binding between the medijum and the device. Calls which perform i/o do not
require a sysname. The proper device object calls are found through the system device tables.

4.3.1 init(devname) retwrn medname

Init generates a sysname for the medium currently on the device specified by devname. This
sysname is written in the medium header. Also written into the medium header is the device
specific information that is required. An area for the medium index table is reserved. The
return value is the medium. This is a format call; any existing structure on the medium is
overwritten. No other formatting is done, however. Any partitions desired are created later by
other calls. Redundant copies of the medium header and index table are created for reliability.

After the medium has been formatted, init mounts the device. See the description of mount for
details.

4.3.2 mount(devname, medname) returns integer
This call binds the device called devname to the medium called medname. The sysname
presented to the call is compared to that in the medium header. If the two match, the device
and medium are bound. The medium index table and the medium map table are read from the
disk. If the device requires it, a bad sector table is created from the device. The return value
specifies the status of the call (success, failure).

4.3.3 retun_medium_cap(devname) returns medname

This call returns the sysname of the medium that is bound to the device named devname. The
return value is this sysname. If the device is unbound, a valid sysname might still be returned if
a formatted medium is present in the device. In this case, the call can be seen as an operation
to read a label.> This allows us to use media for which all currently existing copies of the
sysname are deleted or unavailable.

4.3.4 unmourt(devname) returns integer
Unmount breaks a device/medium binding. All partitions on the medium are de-activated. The
return value is the status of the call.

4.3.5 read(lbn, address) retwrns integer

This call transfers the contents of a record located at disk address 1bn to the page in memory at
address. Read blocks the calling process on a semaphore until the request is complete and
returns an integer indicating success or failure of the request.

4.3.6 write(id, Ibn, address, flag) returns integer

This call transfers the contents of a page in memory at location address to the record located at
address 1bn on the device in question. Id is an identification used to associate this request with
a set of requests being issued by an action. If id is an action sysname, then the device object
looks the action id up in a flush table and if it is not there, creates an entry for the action and
the request; if the action id is in the table, the request is added to that entry. If id is zero, then
there is no action associated with this request. Flag is used to indicate whether this is a forced

3. This kind of operation might seem to present a security hole in the system, in that it allows the system to determine
the name of an unknown medium and then mount it. However, note that this call can only be executed by kernel
code or by a user call with special kernel capabilities, and these are assumed to be trustworthy.
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write. If flag is non-zero, the device interrupts the normal scheduling of requests by placing this
request at the head of the queue. The new request is performed immediately after the current
request is completed. A forced write blocks the calling process on a semaphore until the request
is complete. Non-forced writes do not normally block the caller.

4.3.7 flush(id) returns integer ~

Flush uses the flush table maintained by the device object to ensure that all write operations
associated with the action identified by id are actually completed. The return value indicates the
status of the call. A positive return value (the number of requests completed) indicates a
successful flush. A zero or negative return value indicates that the action’s sysname was not
found in the flush table or that some error occurred while attempting to flush the specified
requests.

4.3.8 enter(partname, size) returns lbn

Enter registers a partition on the device. This involves making an entry for the partition in the
index table for the device, placing the partition sysname, partname, and the partition size, size,
in the entry, and allocating storage on the medium for the partition. The starting logical block
number for the partition is placed in the index table and is returned as the value of the call. A
negative return value indicates that an exceptional condition occurred, such as not enough
storage for the partition on the device. Enter is called as part of creation of a partition.

4.3.9 remove(partname) retwrns integer

This operation allows the caller to remove a partition from the device. Partname is the sysname
for the partition. The entry for the partition is removed from the index table on the device and
the storage for the partition is deallocated. The return value indicates success or an exceptional
condition, such as a non-existent partition. Remove is called as part of the removal of a
partition from the device.

4.3.10 partitions(partarray) returns integer

Partitions places the partition entries in the device’s index table into the array parameter
partarray. The major use of partitions is expected to be at system initialization, where it
passes partition’s sysnames to the boot code so that the partitions may be activated. The return
value is either the number of partitions written into the partarray (a non-negative value) or a
negative value indicating an exceptional condition, such as a bad index table.
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5. The Partition Object

The partition object represents an intermediate level of abstraction of secondary storage.
Partitions are consecutive blocks of secondary storage that reside completely on one device.
Each partition is a logical object in that it manages the allocation of its own storage and
maintains the structures used to do so. A Clouds partition does not enforce any logical
organization of the data which resides on the partition, at least not in the sense of a Unix*
partition. A Unix partition represents a separate file system and all the files on the partition
have a hierarchical relationship. The objects residing in a Clouds partition may bear no
relationship to each other. It is simply an administrative organization imposed by the partition
system indicating how storage in a particular partition is managed.

The two important types of partitions are recoverable and non-recoverable. When a partition is
made non-recoverable, it is a declaration that no recovery will be provided for object data
stored on that partition and that recoverable objects should not be placed in it. There is no
similar restriction for recoverable partitions; such partitions may contain a mix of recoverable
and non-recoverable objects. Other partition types include those used for paging surfaces and
those reserved for temporary items.

Partitions manage storage as device independent blocks of storage and these are the smallest
units of allocation that partitions support. The blocks are addressed by a partition block number
(pbn) which is an offset from the beginning of the partition. All partitions are a multiple of this
block size.’

The partition has as its initial block a header containing partition specifications. The header
repeats most of the information found in the medium index table entry for this partition, plus
information about the partition’s state. This structure is generally accessed only when the
partition is activated or some change is made to the partition; at other times the information is in
memory and is referenced there.

Another structure used by the partition object is the system partition table. Like the system
device table, the SPT is not part of any one partition object instance, but is part of the
underlying mechanism. The table contains entries for all partitions which reside on the local
machine. Each entry in the table associates a partition sysname with the data structures and
information for that partition. These structures and information include the starting block
number for the partition, pointers to in-memory structures and buffers used by the partition
object, and a pointer to the device object on which the partition resides. This last pointer is
actually a pointer into the system device table. Figure 4 shows the complete relationship
amongst these structures.

Another function of the partition object is to maintain the location of segments and make
available this information upon request. One of the features supported by the Clouds kernel is
the location independence of objects (and thus segments). We mean by this that an object may
reside on any partition on any node in the Clouds system and may be moved to any other
partition on any other node. This implies that each access to an object requires that a
(potentially) system-wide search be initiated. The sysnames given to objects give no (definite)
information as to the location of the objects. As can be imagined, such searches can be time-
consuming. In particular, searches on the partitions at a node might require one or more disk
access each. We discuss one merhoda of lessening the impact of these searches shortly.

4. Unix is a trademark of AT&T Bell Laboratories
5. The preliminary implementation will undoubtedly make this size equal to the size of a main memory page frame.
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Figure 4. The system partition table and other partition object structures
5.1 Partition Data Structures '

Two of the major functions provided by a partition object are the location of objects and the
management of storage. To provide these functions the partition object maintains two
structures: the partition directory and the partition page map. The partition directory is a large
hash table which is composed of page-sized buckets. In our current implementation the bucket
size is 512 bytes, allowing each bucket to hold sixteen entries, each entry consisting of
sysname-pbn pairs. The sysname is the id for a segment and the pbn is the offset of the
segment within the partition. The entries to the directory are hashed to the proper bucket on
the sysname and then to the proper entry in the bucket by a secondary hash function, also on the
sysname.

The page map is simply a bit map representing the sw.vage allocation for the partition. This
structure, along with the directory, contain most of the information that composes the partition
state. As such, they are crucial to maintaining the reliability of the partition and the system as a
whole, and some care must be taken in the modification and access of the partition directory and
page map, as explained in section 7. Additionally, the storage manager must protect these
structures from device failures. The basis for this protection is redundancy of the information.
The partition directory and page map have duplicates at known locations in the partition. We
are not overly concerned with the extra storage required; we calculate that even with duplicate
structures we can keep the storage requirements for these two structures below one per cent of
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the total storage. Combined with the protocols we follow for maintaining the reliability of
segments and partitions, we should be able to minimize the access overhead caused by this
redundancy.

The partition directory and page map may be too large to completely reside in memory and, in
fact, we will not have them mapped entirely into virtual memory. Instead, we will maintain
buffer areas for the two structures, bringing in new pages from secondary storage as needed,
and using a least-recently-used discipline for replacement. We suspect that locality for the page
map will be fairly good so that allocations of storage can be done from the memory buffers.
However, we suspect that accesses to the partition directory will typically take one access to
secondary storage. If our hashing functions are chosen properly we may be able to handle
directory requests in (at most) one secondary storage access.

The partition object maintains another structure which it uses to avoid unnecessary secondary
storage accesses altogether (or at least make such accesses rare). The structure in question is a
Bloom filter {1 which we have called the Maybe Table. The Maybe Table is a probabilistic
membership checker. It will indicate either that the object in question definitely does not reside
on the partition being checked, or indicate that it possibly does. Thus, the Maybe Table gives a
method of short-circuiting secondary storage accesses in cases where it gives a negative
response. However, a positive response may still lead to unnecessary accesses to secondary
storage. The key to success is to reduce the ratio of non-resident positive responses to all
positive responses to as small a value as possible.®

As described in (19, a probabilistic membership checker is a hash table where collisions are
allowed. There are two techniques described in that paper that present methods that could be
used with Clouds object sysnames. In the first technique, the Maybe Table consists of a table of
transformed entries. The transformation is a hashing function which takes a 48 bit sysname and
produces a shorter Maybe Table entry. Several sysnames may hash to the same entry value.
This entry value is then placed in the Maybe Table by the use of another hashing function; this
time collisions are handled in a conventional manner. To query the Maybe Table, the sysname
is once more transformed with the first hashing function, and the proper entry located using the
second. If the retrieved entry matches the transformed sysname, a positive response is
returned. Otherwise, the collision handling mechanism is invoked and another entry is tested.
If a positive response has not been returned upon termination of this procedure, a negative
response is returned.

A second scheme is to treat the Maybe Table as a bit-string and use ¢ different hashing
functions, each of which returns an index into the bit-string. Placing a new entry in the Maybe
Table requires setting the bit whose index is returned by each hashing function. The test for
membership requires that all bits whose indices are returned by the hashing functions be set;
any clear bit causes the return of a negative response. Figure 5 illustrates the use of these two
techniques. In the example, the Maybe Tables are 18 bits in length. In each case, sysnames are
represented by three bits in the Maybe Tables. In the first case, sysnames are represented
straight-forwardly by three bit entries; in the second case, three bits are set for every sysname
belonging to the table.

The benefit drawn from the use of a Bloom filter such as the Maybe Table is that it is a more
commast representation of the universe in which membership is being tested. In the case of the
Clouas kernel, this is the sysname population of a partition. This allows more of the table to be
kept in virtual memory (perhaps all of it), and so queries on the Maybe Table can generally be

6. This is an area that is open to further research. We believe that the goal is achievable by careful selection of the
(possibly more than one) filters used, and their manner of implementation. We hope to do some measurements and
research on this once the system is working.
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Figure 5. Two implementations of a Bloom filter

answered without going to secondary storage. If the response is negative, an unnecessary access
to secondary storage is avoided, speeding the search for the proper segment. If the response
from the query is positive, then an access to secondary storage is required, to either locate the
segment or to ascertain that it is really not on this partition.

Maintaining the Maybe Table has several costs that must be considered. One, of course, is the
initial creation cost. The storage manager will perform this initialization at system start-up for
each partition and thus the time spent can be ignored. Another cost arises from the dynamic
nature of the Clouds system. Objects are created on a partition, deleted from the partition, and
moved to other partitions. ‘Ciearly, these changes must be reflected in the Maybe Table else the
performance will be degraded. Creation of objects and the movement of objects onto a
partition pose no problem: the sysname can simply be incorporated into the table via the
methods described above. However, deletions of objects and movement of objects from a
partition are more troublesome. An entry or set of bits in the Maybe Table cannot be cleared to
remove a sysname’s presence from the Maybe Table because several sysnames may be
represented by the same entry or set of bits.
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The simplest solution is to simply reconstruct the Maybe Table at intervals during the lifetime of
the system. This reconstruction may be done asynchronously as a background task. The
question of when the Maybe Table should be rebuilt is not yet answered. It would seem best to
base the interval between reconstructions on activity of the partition, particularly the rate of
deletions. This could be be done indirectly by recording the performance of the Maybe Table
and reconstructing the table when the performance falls below a given threshold. Or the
monitoring could be more direct, measuring the number of deletions and movements of objects
from the partition. Both of these methods have advantages and disadvantages. The indirect
method for example, seems to be desirable since it measures the attribute that we want to
optimize (avoiding disk accesses). However, a burst of queries for a sysname not resident on
this partition but which happens to hash to the same entry or set of bits could cause a severe
drop in performance even though the table as a whole is behaving reasonably well.

We are currently incorporating a Maybe Table into the partition object as described in !9, We
wish to get the maximum performance from the Maybe Table with the minimum impact on
virtual memory. Therefore, we may consider other implementations for the Maybe Table,
depending on the performance obtained. It may be, for example, that we are able to take
advantage of the nature of the sysname population to improve the performance of the table.

5.2 Calls on the Partition Object

The storage management system uses the following calls to manipulate the partition data. Most
of the calls require at least one sysname as an input parameter, usually a sysname for the
partition (the exception being create_partition; see below). Occasionally, sysnames for
segments and devices may also be required.

5.2.1 P_create(devname, size, partatt) returns partname

P_create reserves a sequence of records on a device to form the partition. Size is the size of the
partition in bytes (this parameter is rounded by the call to the record size of the device) and
devname is the sysname of the device on which the partition is to reside. A sysname for the
new partition is generated and returned as the value of the call. The record location of the
initial record of the new partition is stored, along with the size (in device records) and the
partition sysname, in the media index table. The attributes of the partition, specified in the
input parameter partatt are also stored in this new partition entry. P_create makes use of the
enter call on the device object to perform its task. In particular, P_create must be able to
request allocation of storage from the device.

5.2.2 P_destroy(devname, partname) returns integer

This call takes the two sysnames given as input parameters and frees the chunk of storage used
by the named partition. partname specifies the particular partition to be destroyed and devname
specifies the device on which it resides. The integer return value indicates the status of the
partition after the call (destroyed or not found on this device). The call removes the partition’s
entry in the media index table and releases the storage used by the partition. The device
manipulations are performed with the device object call remove. P_destroy also makes calls on
the device object to perform its task.

5.2.3 P_enter(partname, segname, pbn) retwrns integer

P_enter places an entry in the partition directory for a segment. Segname and partname
identify the segment and partition, respectively. The entry in the directory includes the segment
sysname and the partition block number, pbn. The call also modifies the Maybe Table. The
return value indicates success or an exceptional condition.

5.2.4 P_remove(partname, segname) returns integer
This call removes the entry for a segment from the partition directory. Segname and partname
identify the segment and partition, respectively.
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5.2.5 P_return(partname, segname, seginfo) returns integer

P_return returns the segment header indicated by segname which resides on the partition
specified by the input parameter partname. The header includes the sysname for the segment,
the size of the segment (in partition records), the record address of the segment header, and
whether the segment is recoverable. The segment header is placed in the parameter seginfo,
which is a pointer to a block of storage reserved for the information. If the segment is present,
the return value of the call is positive; otherwise the return value is negative. The call finds the
information by searching the partition sysname map and examining the segment header found.
The Maybe Table is first queried in an attempt to avoid unnecessary secondary storage accesses.

5.2.6 P_get_{first,next}( partname, number, segarray) returns integer

These two calls are similar to P_return, in that they return the attributes of a segment found on
the partition specified by the input parameter partname. The segment is unspecified, however.
P_get_first places the first number of segment sysnames appearing in the partition directory in
the parameter segarray. P_get_next can then be used to retrieve the attributes of the number
subsequent segments. The two calls share a static variable which holds the index of the next
segment about which information will be returned by P_get_next. The variable is reset to zero
after the last entry in the partition directory is accessed and is initially set to zero. which is an
array large enough to hold the requested number of sysnames. The return value is either zero,
indicating no sysnames could be found, or the number of sysnames actually returned by the call.

5.2.7 P_available_space(partname) returns integer

This call simply returns the number of free records on the partition indicated by partname. A
negative value may be returned in exception conditions. The call does a bit count on the volatile
record map. Because the volatile free map contains allocations and deallocations for
uncommitted actions and because no synchronization is done on the record map, the value
returned should be considered only an approximation of the “true” number of free records.

5.2.8 P_{read,write}(partname, part_ofset, address) returns integer

P_read causes the transfer of the contents of a partition record, part_offset from the partition
specified by partname to the physical page in memory indicated by address. P_write reverses
the procedure, transferring the contents from the physical memory page to the partition record.
The calls use their return values to signal exceptional conditions. The virtual memory system
uses this call to handle page faults.

5.2.9 P_getblk(partname) retions pbn

P_gethik simply returns the partition block number of a free page on the partition. The volatile
page map is updated to reflect the allocation. A negative value is returned if there is no
partition storage remaining.

5.2.10 P_retunblk(partname) returns integer
This call deallocates the page at the partition block number passed through pbn. The volatile
page map is updated. A negative value indicates a bad partition block number.

5.2.11 P_restore(partname, pbn) returns integer

The P_restore operation is called on system startup to examine the partition. If necessary, the
operation will perform any repairs to the partition structures required to bring it back into a
~onsistent state. The call will also cleanup any unfinished action processing. This sort of repair
i done on a partition-by-partition basis, since not all partitions have the same attributes and
therefore will not require the same processing. In particular, cleanup of action processing is not
necessary on partitions not supporting recovery and partitions being used as paging surfaces.
P_restore must determine attributes of the partition by examining the partition header and then
proceed accordingly. The details of P_restore’s operation are described in section 7, which is
concerned with the reliability of the storage manager. P_restore also initializes structures used
by the partition object, such as the Maybe Table.
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6. The Segment Object

The segment object provides the final level of abstraction for secondary storage. With these
objects, we are operating on blocks of storage allocated by the partitions. The abstraction
provided by the segment object is that of a sequence of bytes (kernel segment type). The
implementation is actually a tree of fixed length blocks of storage, as we shall see.

Segment objects provide a standard abstraction for the kernel to manipulate and process all
Clouds objects. The object implementation provides mechanisms for mapping segment data in
and out of virtual memory, creating and destroying segments, and modifying segments. The
necessary algorithms for maintaining the reliability of the segment data exist at this level.

The segment object is unconcerned with the internal organization of the objects it is managing.
The storage management system treats segments as uninterpreted bytes. Any interpretation is
performed by other parts of the kernel, such as the object manager.

6.1 Segment Object Data Structures

Recall that a partition directory has a set of entries which contains the pbn for the segments
residing on the partition. The partition block addressed by one of these entries contains a
segment header that identifies the segment. The complete header is 512 bytes long and contains
the segment (object) sysname, the object type sysname, a segment status field, a segment
shadow pointer (the status field and pointer are used for recovery), and the size of the segment
in bytes. The remainder of the header contains an array of pointers which lead to the segment
data. These pointers address one of two sorts of blocks: index blocks, which are arrays of
pointers to other blocks, and data blocks, which actually contain segment data. If, however, the
storage required for segment data is less than that used for the array of pointers in the segment
header, the segment data can be placed in the segment header itself. This would provide for the
efficient processing of very small segments. Figure 6 shows the segment structure.

A segment is a tree whose depth depends on the amount of data in the segment. Hence, the
smallest segment may have a depth of two (the header and the data blocks addressed by the
header), but trees of arbitrary depth are supported. This also means that occasionally the
segment will be restructured when its size is increased.

The interaction of the segment system and virtual memory is still being designed. It should be
pointed out that much of the manipulations performed by the segment object will involve the
segment’s representation in virtual memory and the structures maintained by virtual memory
itself. The segment system also makes some assumptions. One of these is that the location of
the segment is known. That is, the action or process using the segment knows the partition on
which the segment resides. Particularly, most segment calls do not require a partition sysname
as a parameter.

6.2 Calls on the Segment Object

The following calls all require the sysname for the segment being manipulated. Any offsets are
data record offsets, using the logical view of the segment.

6.2.1 S_create(partname, segname, attr) returns integer

S_create allocates storage for a segment and sets up the segment header and index records.
The input parameters are the two sysnames for the partition and segment to be created,” and a
structure holding information about the segment (its size, object type, recoverability). The
storage for the segment can be allocated and structured on the basis of the size field of attr,

7. Note that this call does not return a new sysname for the segment. If that were the case, it would not be possible to
move existing segments into a partition and still reference them by their old names.
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Figure 6. Clouds kernel segment structure
Data records are written in subsequent requests. The return value indicates the call status.

6.2.2 S_destroy(partname, segname) returns integer
This call deallocates storage for a segment. The sysname for the segment, segname, is removed
from the partition directory.

6.2.3 S_read(segname, offet, size, addr) returns integer

The S_read call causes the transfer of size number of pages from storage to memory. Segname
identifies both the memory and storage versions of the segment. The source of the pages is at
location offset of the segment named by segname. Addr is the virtual memory address of the
transfer destination. The return value indicates the status of the call.

6.2.4 S_write(segname, offset, size, addr) returns integer

S_write transfers data from memory to storage. Addr is the source of the transfer, in this case a
virtual memory address. Segname is the sysname for the object (segment) whose data is to be
transferred. Note that this identifies both the memory pages (source) and the secondary storage
pages (destination) that must be transfered. Size number of pages, beginning at offset offset of
the segment, are copied from virtual memory to the storage segment. The return value
indicates the status of the call.
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6.2.5 S_precammit(aid, touchlist) returns irteger

S_precommit performs the segment level precommit protocol as described in section S.
Touchlist is a list of the objects which have been modified by the action. Aid is the sysname of
the action making the precommit call. The call return value indicates the success or failure of
the call.

6.2.6 S_eoa(segname, flag) returns integer

This operation performs the segment level commit or abort protocol as described in section S,
depending on the value of flag. The return value indicates the success or failure of the
operation.

6.2.7 S_chgsize(segname, delta) returns integer

The call allocates or deallocates storage from the end of a segment Delta is the number of
records to allocate or deallocate (positive or negative value, respectively). The return value is
the status of the call.

6.2.8 S_status(segname) retwrns integer
This call determines the state of a secondary storage segment by examining the status field of
the segment header. The return value is this status (permanent, shadowed, precommitted).
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7. Reliable Storage Management

In this section we look at the techniques used to ensure the reliability of the storage manager in
the presence of machine failures and action aborts. All the techniques described below require
the information and features provided by the use of atomic actions. This information includes
the knowledge of when it is correct to make the effects of an operation permanent and what
data has been modified. The storage manager provides a set of protocols that use this
information to make the correct updates to secondary storage so as to leave the storage system
in a consistent state. In order to understand these techniques and the motivation behind them,
we need to understand how the Clouds kernel manages actions.

BOA Precommit commit EOA

A f— s Il | }

Precommit
BOA blocked Precommit

commit EQA
B modifies I 1eudy to precommit I I l
object O I tut blocked by A I I I
Precummt
Binched Precommt

BOA
C modifies I ready to precommit |
objectO I but biucked by 8 I

Figure 7. Actions block on competing commits

The Clouds system considers actions to be units of work. Many actions may be active in the
same object, with each action updating object data. The only restriction enforced by the kernel®
on the synchronization of actions which are operating concurrently on a single object is at action
precommit. An action that precommits in an object blocks all other actions from precommitting
in that object until the precommitting action is committed. Other actions still update and process
the object’s data; the only restriction is on the precommit procedure. Although this restriction
may seem to create potential bottlenecks, the simplifications it provides in the processing of
commits will keep the blocking intervals short enough so as to cause no problems. In particular,
this restriction means that the storage manager must provide reliable updates for only one action
per object per time period.

There are two levels at which the storage manager must supply this sort of reliability: at the
partition level, and at the segment level. The partition has critical data which must be updated
correctly to allow the storage manager to function correctly. As stated previously, this data
includes the partition directory and the partition page map. At the segment level the storage
manager is responsible for the consistent update of object data and the underlying structures *at
represent this data. We use two rather distinct approaches to providing the recovery for wese
two levels. In both cases the techniques provide pessimistic recovery; no changes are actually
made to the “live” data until the responsible action commits.

J

8. The programmer may define other forms of synchronization within the implementation of the object based upon
semantic knowledge and other design factors. The kernel does not preclude such choices.

Technical Report GIT-ICS-85/02




7.1 Segment level recovery

Segment recovery is accomplished via a shadowing schemel'!l. That is, segments on which
actions are operating will have shadow versions which the actions will actually see. We note
that one of the goals of the recovery scheme is, aside from producing consistent results, to allow
recovery of segments (and partition structures) with as little storage overhead as possible, and
with as few storage accesses as possible. Shadowing, then, will be minimal, with only those
parts of the segment actually modified being shadowed.

The shadowing scheme consists of a set of protocols that indicate what the storage manager
must do for specified segment states and action events. We consider these states and events in
the following paragraphs and develop the protocols that shadow segments. When an action is
started, the storage manager is involved initially in the transfer of the data for the object being
operated upon from storage to memory. Until precommit occurs, the only transfer of
information is from device to system. All modifications to the action data are handled in
memory by the action manager. On the action commit the storage manager starts transferring
information back to storage. These transfers are the result of the action management system
protocols for transfering action updates to the permanent state of the object.

7.1.1 The precammit protocol

The precommit protocol ensures that updated pages of object data that an action has modified
are recorded on non-volatile storage to prepare for the final commit of the action. The storage
manager performs the shadowing and data transfers as follows:

P1 The storage manager determines how many pages are to be shadowed and allocates
storage for shadow versions through calls to the virtual memory system and the partition
object, respectively. The storage manager allocates shadow storage not only for modified
data pages, but also for the segment header, plus any index pages that are required to
reach a modified data page.

P2 The storage manager shadows the segment. The segment header is copied to the shadow
segment header. The modified data pages are copied from memory to the shadow data
pages. Modified versions of index pages are copied to shadow index pages. Some index
pages must be modified and shadowed so that the shadows point to the shadow versions
of data pages. The storage manager places a modified version of the segment header
into the shadow segment header. Modifications made to the segment header data could
include a change in the size, and changes to the array of pointers (some of these pointers
may point to shadow pages, as with the index pages).

P3 The permanent segment header is modified so that the status flag indicates that the
segment is being shadowed. A pointer is also set in the header which indicates the
location of the shadow segment header.

One point to note about the above protocol is that there are a number of reads assumed to get
the segment structure into memory. Also note that the number of pages that must be shadowed
and the identification of which index pages must be shadowed can be determined by knowing
the size of the segment and which data pages must be shadowed. The segment header is
modified last to reduce the work necessary to restore the segment in the event the system
crashes before the precommit is completed.*:

Once the precommit completes, we are left with two versions of the segment. The two versions
overlap in spots as illustrated in Figure 8, where blocks within the dashed box are part of the

9. A crash at any point before this final write will recover §vith the shadow pages still listed in the free space list and
completely unreferenced, and thus they get scavenged automatically.
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Figure 8. Precommitted segment

permanent version, while blocks inside the dotted box are part of the segment shadow. Read
operations on unshadowed pages refer to permanent pages. The shadow version is visible only
to the action which is performing the commit.

We must point out that the storage manager’s precommit protocol is not the same as the action
manager’s precommit. After the storage manager has completed the shadowing, the action
could still abort and the shadowed version would have to be removed. An example of such a
situation is when the action spans several nodes and uses a two-phase commit protocol. Phase
one is complete only when all nodes have completely shadc..cu any object data the action
touched on their storage. If one node cannot do this, the action aborts.

7.1.2 The cammit protocol

Once the segment is shadowed and the action decides that it can continue the commit, the
storage manager performs its own commit protocol. The storage manager must switch the
shadow version for the old permanent version of the segment. There is some bookkeeping for
the partition as well. The protocol is as follows:
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C1 Update the permanent page map on storage. This requires that all addresses for shadow
records be allocated in the page map and all modified records of the segment including
the segment header be deallocated in the page map.

C2 The partition directory is set so that it points to the new segment header for the segment.

C3 The shadow segment header is set so that it is now the permanent segment header, that
is, it is marked as “permanent.”

:partition: r= ———— TR N e se e e “ o=
E directory . Deallocated . New .
F entry oncommit | Shadow permanent .
| [ segment segment .
1 syname | |- héader version .
' . .
1 header [ ] Unshaéiowed object :
* index
| Permanent | biock sysname .
sre\gmden' . type
eager
: - : : unshadowed data block sysname
object . - .
l sysr{ame l N unshadowed data block size .
. .
. — more —] shadow :
| type 1. [~ unshadowed ——— ptr N
_J sysname ' : — data psam :
[ - — block = et
r size I : = pointers — Unshadow, ot
I I : ndex blogs
l Sh?;tjl?w I - unshadowed data block .
. dex pinck .
| . ndex oty \ Shadowed .
Precammited l . _ | index .
I Shadowed PR [ = — SR | block :
| index rndex bloc { [~ Unshadowed ~ - .
block - — data — data binck
l index block l - S block el
data block : —-— - // data block
I I L] | PP ———
I data block l - — more e
| M p—— data ~—
— more — I . — block —
l E data po— I . — — —— pointers p—
I — block — I . — tc,ilata ] .
——  pointers ——] . — ock —
l S——— —_— l : = shadow 3 , data biock
. P
I data block I . /
1 {
1 I <
p— -y .
| — Shadowed —J | @ F —]
I — ata — .« = Unshadowed ]
= block — 1 . — data =
| - — 1 ¢ E block =
| I L]
I I

@ 8 & 48 68 0 8 8 WA e E s e e s e E SN E0 e LR R R e

Figure 9. A committed segment

Once this protcoo: 1s complete, any references to the segment will refer to the new version of
the segment. The new segment is a merging of old unmodified records and new records.
Figure 9 shows a committed segment. The blocks in the dashed box were parts of the
permanent segment being shadowed during precommit. These blocks are deallocated as part of
the commit during step C1. During this phase of the protocol, the storage manager updates the
permanent page map on secondary storage. Recall that Clouds uses pessimistic recovery and
any effects of an action, including storage allocation to perform the commit, cannot become
permanent until the action commits. Therefore, all allocations are performed on a volatile page
map. We discuss this and other ideas in the section on partition level recovery.
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7.1.3 The abort protocol

Actions can also abort for one reason or another and the storage manager requires a protocol
for this event as well. The protocol simply rids the segment of any trace of the action’s work as

follows:

A

A2

1 The volatile page map is updated to remove allocations that the action has made to

shadow the modified pages of the segment.
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Figuré 10. An aborted segment

The storage manager uses this protocol only when an action has started to commit and aborts in
the middle. If the action aborts before attempting to commit, the storage manager is not
involved at all. Figure 10 illustrates the results of the abort protocol. In this case, the blocks
inside the dotted line are deallocated upon the abort, as these blocks are only shadows for the

permanent segment.

Technical Report GIT-ICS-85/02

-
.
.
.
-
.
.
.
-
.
.
.
-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

g re e et ss e

The status flag of the permanent segment header is set to show that the segment is
unshadowed and then the shadow pointer is set to null.

Deallocated
onabort

.
Shadow :
segment .
héader .
object :
sysname .
.
type .
sysname :
size .
.
shadow :
ptr o
.
Precommited °
index block :
. .
index biock Shadowed :
index .
block .
data biock :
data block -
—— ] *
 ammamandd more ——t
[ data .

Seuvemm block —]
esmaanadd . ————
amaatad pointers ——y

data block

.
o0nt = .
e data = .
e block 1 :
= shadow  —] .
.




-26-

7.1.4 System failures

One final event must be considered. That is how does the system recover from a machine
crash? Specifically, we are concerned with restoring the segment and partition to a consistent
state after the system is brought up again. The system may have had a number of actions in
various states at the time of the crash and we want to insure the appearance of indivisibility of
actions. Under the Clouds policy, any action that has not precommitted when a crash occurs is
aborted when the system is restored. As we have already noted, actions which do not begin
precommit before the system crashes do not concern the storage manager; these actions have no
effect on system storage. For objects which completed precommit processing, we must
determine whether their action’s effects become permanent or are erased. This depends on the
state of the action. The crash recovery protocol, then, s as follows:

CR1 A new volatile page map is created for the partition.

CR2 The storage manager determines which actions touched segments on this partition and
determines the state of each such action. The storage manager polls a kernel database
and examines the segments on its local storage to identify these segments.

CR3 If a segment was touched by an action that has completed phase one and should be
committed, the storage manager performs the commit protocol on the segment, as above.

CR4 If the action which modified this segment was aborted by the action manager, the
storage manager uses the abort protocol, as given above.

At the end of crash recovery, the partitions are in a consistent state; either the actions occurred
or they did not. The database referred to in step CR2 is a kernel level database shared by the
nodes in the system. The database exchanges information amongst the systems using a suite of
algorithms developed in {!]. The information in the database represents an approximate state of
the network. This database is copied from other nodes by the kernel when a node is added to
the Clouds system. Among the information kept in the database is a list of actions, their status,
and segments touched by the actions. Generally, the storage manager can find here the
information needed for crash recovery. In some cases, though, a local action (one which does
not leave the site on which it is born) may not appear in this list, even though its status at the
crash time was complete and known. In cases such as these, the storage manager can find
shadowed segments only by an exhaustive examination of the partitions.

Another issue is that of a system failure during an action write, so that only part of the write is
actually completed. In the discussion thus far, we are assuming that we have atomic single
record writes. The atomicity we are concerned with is failure atomicity, whereby the write
either takes place or not. In practice, this means that we can detect an incomplete write (the
system failed during a record write) and we are not overwriting the only copy of the data in
question. If a device we are using does not support detection of incomplete writes, we can
simulate the effect using the standard method of stable storage as described by Lampson and
Sturgis in ({2, In {3 the question of when the atomic single record write assumption can be
relaxed, if at all, and under what circumstances, is investigated.

7.2 Partition level recovery

In the last section we outlined the techniques used to provide reliability for the segments on
storage. We now turn to the problem of maintaining the consistency of partition structures,
particularly the page map and the segment directory. These structures were discussed to a small
extent in the last section because they are involved in shadowing segments. We did not discuss
how the structures themselves must be modified to maintain their consistency. Once again, let
us consider the action environment provided by the kernel. Recall that a committing action
blocks all other actions from committing in a segment it has modified. The partitions are
objects, so that any action committing would block all other actions from committing in any
object residing in that partition. For a one partition node, this permits only one action at a time
to commit. We feel that this is too restrictive.
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We allow any number of actions in a partition to commit simultaneously, excluding any segment
conflicts. Given this, we do not feel that shadowing can be used to provide recoverability of the
page map and directories. Maintaining the various shadow versions in itself would be
complicated, but in addition we would need to propagate committed data to as yet uncommitted
shadowed data. We therefore reject our segment level shadowing scheme as an approach for
partition level recovery and we must develop another method for this task.

The partition directory does not have a volatile component. There are two copies of the
directory residing on the partition (for the redundancy necessary to protect against media
failures) and a committing action on a partition object must update both copies in a consistent
manner to indicate that the new object version is to be used. Once again, we assume atomic
single record writes, which will allow us to determine whether the copies are consistent, when
the writes are performed in a determined order. An examination of both permanent copies and
the header of the segment involved, if done in the proper order, will reveal any inconsistencies
and the manner in which they should be resolved.

The partition page map has a volatile component which the storage manager uses to make non-
committed storage allocations and which disappears after a system crash. Note that the volatile
page map provides correct storage allocation information excluding system failures. Now recall
that the commit protocol for storage management entails three steps, the second of which
involves installing the action’s storage allocations onto the permanent page map. We have two
approaches we feel will provide consistent updating of the permanent page map. The first
approach simply does away with the permanent page map of the partition, and maintains only
the volatile version. As noted earlier, this provides correct storage allocation until a system
failure occurs and the page map is lost. Clearly, we must be able to recover the page map after
the system is restarted, and the obvious solution is an examination of the partition. Equally
clearly, this will require quite extensive processing upon system startups.

The second approach to maintaining the partition page maps involves the use of intention lists
and does require a permanent copy of the page map. With this approach, the storage manager
during step one of the segment commit protocol does not write directly to the permanent page
map, but instead writes an intention list of storage allocations (deallocations) to disk. Because
the volatile page map reflects the correct storage allocation for a partition, the actual updating of
the permanent page map from the intention list can be performed as background processing by
the storage manager. If the system crashes before some updates are performed, they can
always be done as part of the system startup processing. The steps required by this protocol are
shown below:

1. The creation of the intention list begins at precommit. When the shadow is allocated, the
storage manager places these pages on the allocation intention list. The pages to be
replaced by the shadows are placed on a deallocation intention list.

2. When the signal is given to start the final commit, these lists are written to a list of
pending allocations maintained by the partition.

3. At some later time, these lists are merged into the page map as part of normal partition
bookkeeping.
The only restriction is that the updates from the intention list must be performed in the order in
which tia: <llocations and deallocations were committed.

Our initial implementation of the storage manager will use the first mechanism. We have two
reasons for doing this. First, we are concerned more with the cost of commit processing than
we are with system startup processing simply because we feel that system failures will be
infrequent and because action processing is our model of computation. This approach both
simplies the implementation and makes the commit process more efficient, since no extra disk
writes are required to update a permanent page map.
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Secondly, an extensive examination generally will be made of the partitions at system startup to
clean up any unfinished action commits or aborts. The reconstruction of the page map is
partially subsumed in this processing.

7.3 Device support for recovery

The above protocols have several implicit assumptions on which they rely to operate correctly,
two of which concern the device object. We have already mentioned the assumption that devices
can perform atomic single record writes. The other assumption concerns the transfer of data
from system to storage. The protocols assume that upon completion of a call to any of the
“write” operations the data intended for transfer to storage has, in fact, been transferred.
Under conventional systems, this is not necessarily the case, since requests for writes to storage
may be buffered. Data may or may not actually be transferred before the system crashes. If
the data were not actually transferred, there is no way to recover the segment or partition when
the system is restarted.

At the device level, then, the storage manager requires some way in which to ensure the timely
completion of data transfers. We wish to accomplish this without adversely affecting the other
processing on the system. Also, the action causing the writes to storage must be informed of
the completion of the writes in order to continue its commit processing.

There is a great deal of latitude with the timing of when the action writes are forced to the
device. One discipline is to have a synchronous write operation that immediately forces the
device to schedule requests issued by the operation. By this we mean that any requests currently
being processed are completed and then normal scheduling is pre-empted. Synchronous write
requests are then carried out in order of receipt. Thus, action writes are forced to the device
early in the sequence of action commit processing. The drawback is that requests for
synchronous writes appear in bursts at precommit and commit. Any scheduling that the device
does for efficiency of the device’s operation is disrupted.

Another approach is to allow the device to schedule the requests subject to its own constraints
and simply inform the storage manager when the requests are completed. This allows the
devices to schedule requests efficiently, but can delay action commit processing. However, the

storage manager does know when the completion of the precommit and commit protocols can be
safely signalled.

A compromise approach initially allows precommit and commit to be enqueued as usual and
handled as normal requests. It is only when completion of the commit or precommit is
imminent that the write must be forced to storage. To accomplish this, requests must be
identifiable by the storage manager so that the manager can signal which requests must have
priority. The manager can simply place the action id of the committing action in a field of the
request when requesting a write to storage.

When the storage manager determines it is necessary, it can make a call on the device object to
reorder its queue of requests, giving priority to this action’s requests. This technique may prove
useful if a significant amount of time can elapse before the storage manager must complete the
precommit and commit procedures. In cases where the action has touched a number of objects
on several systems this may indeed be the case. In such situations, the devices can operate
efficiently (and possibly reduce the number of pending precommit and commit requests,
reducing the disruption when it becomes necessary to force them to storage), and the action is
not delayed, since it is not ready to complete its commit. To accomplish this as stated, the
storage manager must be able to identify when requests must be forced to storage. This will be
based on the results of any two phase commit that is performed and the storage manager will
rely on the action management system to signal when final commit is to be performed.

Each device object maintains a flush table (as discussed in section 4) to control the forcing of
action writes. When the list of requests for the action entry in the flush table is empty, the
storage manager can inform the action that the commit processing can continue.
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7.4 Summary

Support for reliability and recovery is integrated throughout the storage manager from the
lowest level to the highest. The segment system, via the use of segment objects, provides for
recovery of client object data recovery through the use of shadowing of modified data and the
discipline of the shadowing provided by the protocols discussed above. The data that the
storage manager uses to manage Clouds objects is made recoverable by the partition objects. At
this level, our primary concern is how to maintain the data across system failures, and we
present a few approaches for doing this. At the device level, support is provided to ensure that

data is written when necessary, allowing action processing to be performed correctly at a higher
level.
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8. Conclusions

The motivation behind the Clouds project is the belief that systems in general and distributed
systems in particular should provide reliable data management and reliable computation. This
report documents part of our efforts towards that goal, namely the storage manager for the
Clouds kernel. The Clouds storage manager, in addition to providing the traditional services of
storage management, also provides support for the object-action methodology presented by the
Clouds kernel.

We have presented an overview of the storage manager for the Clouds kernel. The storage
manager is presented as a collection of objects, each of which provides an abstract view of the
secondary storage. At the lowest level, secondary storage is viewed through the device object,
and the physical storage medium is viewed as a sequence of pages (in the current
implementation, a page is 512 bytes) with very little structure, other than the device header and
index table. One step higher in our hierarchy is the partition object, which manages a portion
of the raw storage provided by the device object. Once again storage is viewed as a sequence of
pages, but that storage has a more defined structure. Each partition maintains a directory and a
page map, so that each partition is responsible for managing its storage and for providing a
location service for the next level of abstraction, the segment object. The segment object
provides a view of storage that is a sequence of bytes and each segment object generally
corresponds to some other kernel or user object. The storage manager views segments as a
tree-like structure of pages.

We have described the data structures associated with each object and presented the operations
with which the data structures can be manipulated. We have also tried to convey the
relationships amongst the three objects and to show how they interact with each other and the
rest of the kernel.

The research that we are conducting is primarily involved with how the storage manager
provides the recoverability of the storage it manages and thus supports the reliability of the
Clouds kernel. To that end the storage manager uses a set of protocols to ensure that object
data is updated in a consistent manner and that even through system failures, enough
information survives to maintain the consistency of the object. We show how these protocols
are used to support the action/object programming paradigm of the Clouds system.

Each level of storage object discussed provides some support for recoverability. The device
objects maintain flush tables which allow the storage manager to ensure that action writes are
completed before a commit is finalized. The partition object maintains a consistent view of
allocated storage and insures the correct updating of the partition directory. The segment object
provides recovery of object data through the set of protocols described.
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Kernel Structures For Clouds

. LRGINAL FATT IS
1. Introduction O R QJALITY

In the past few years, a great deal of research has been focused on the potential benefits of distributed
systems. In particular, a distributed system offers the potential of a fault-tolerant computing
environment. A distributed system also suggests increased computing power through the
combination and application of resources. The presence of multiple machines, however, raises many
questions relating to communication, consistency, reliability, configuration, and user interfaces, to
name just a few. These questions are difficult Lo address, and that is perhaps the reason why so few
attempts have been made to construct actual distributed systems. Interesting recent work in this
area includes the Eden project at the University of Washington (e.g., | Alme83)), the Argus project at
MIT (e.g., [Lisk83] and {Weih83h, the Accent system at CMU ([Rash811), and the ISIS project at
Cornell ({Birm84]).

The Clouds project is an approach to the construction and application of a distributed system that is
intended to address these questions. We support the "room full of computers” view of distribution. In
this view, the user sces a single resource, despite physical distinctions. In our research approach, this
1s achieved by constructing a highly transparent multicomputer operating system with low-level
support for maintaining consistent data items. A multicomputer or computer cluster is a system of
many computers joined into one large syvstem. The system’s distribulion is transparent to users and to
most operating system components in the sense that the user is not aware of the nature or number of
machines which compose the multicomputer. The user’s data and processes may be distributed
throughout the multicomputer svstem. or they all may be located on one processor -- there is no
observable difference to the user, nor i there any need for the user to be aware of the confliguration.
We support this transpareney during upieard configuration -- the addition of more machines, and
during downward reconficuration  the removal or failure of machines.

Clouds supports abstract data objects at a very low level. These objects are used to build the operating
system and applications. Some of these objects may be made recoverable (operations on Lhose objects
may be undone or reversed in the event of failure or error). Atomic transactions or actions are used by
hoth the operating system and user applications to maintain consistency and recoverability of data
and operations. The design makes use of actions and objects to provide reliable operating system
services, such as job schedulers, and thus provide a fault-tolerant system.

The principles and motivations behind the Clouds project have been described in more depth in
several documents (|MeKe83|, [ MeKe84, [ALIe83al). The authors assume that the reader is already
acquainted with the Clouds project and is somewhat familiar with the goals outlined in those
documents. This paper is intended to be an introduction to the internal structures of the Clouds
kernel. We will be constructing an experimental Clouds system during the next few years using
dedicated minicomputers and personal computers. Further desceription of the Clouds kernel will be
done as this experimental svstem continues to be designed and constructed (|Spaf84), [Spaf85],
[Pitt851).

2. Basic Assumptions

2.1 Terminology and Logical Structure

The term computer is used in this paper to mean a physically-diserete computer. FEach computer
supports an instance of the Clouds sub-kernel. The sub-kernels implement the Cloads virtual
machine on cach computer. The copies of the sub-kernels communicate with cach other and together
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form the kernel for the system. The operating system itself is implemented above the kernel, and
applications are programmed above the operating system.

Figure 2.1 illustrates this logical hierarchy of levels.

Applications

Applications Applications

Operating System

Kernel
Sub- Sub- Sub-
€ € ®
kernel kernel kernel

Physical Physical Physical

Computer Computer} Computer

Figure 2.1 -- Clouds logical hierarchy of levels

2.2 Hardware Structure

The Clouds multicomputer is composed of @ number of minicomputers connected by one or more
communications paths, and accessed by "intelligent” terminals. The minicomputers are likely to be
in close physical proximity, while the terminals may be somewhat more distant, but will still be
within 1-2 km. Although isolation of a single machine is possible (a trivial partition), we anticipate
that the probability of w general partition (disruption of communication so as to form functioning, but
1solated groups of processors) will be small.

Our first prototype system will eonsist of three or four Vax 11/750 processors connected together by a
fault tolerant 70Mb/sce bus. These systems will also be connected by a 10Mb/sec Ethernet, and
possibly through dual-ported disks. A number of IBM PC microcomputers will also be connected to
the Ethernet and will serve as intelligent terminals. Figure 2.2 illustrates the connections.

2.3 Access rights, names, and capabilitites

The system references objects with unique identifiers. Fach item is veferenced uniquely via a 32 bit
quantity known as a sysname. The sysnames are unique in time and spaee -- non-identical items have
different names. Sysnames are composzed of a node 1D and a scquence number, which together form
the birthmark. The sequence number is composed of two fields -- the subsequence number, and the
crash count. The subsequence field is incremented for each new name request. The crash count is
incremented each time a node is restarted, and ciach time that the subsequence field overflows. The
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sysname also contains a field which helps determine the type of the item referenced by the sysname --
a system procedure, a user-defined object (referred toas a client object), a process, and so on.

Objects are referenced via object capabilities. An object capability is a 64 bit value consisting of the
sysname of the object instance being referenced, and a 32 bit capability mask defining the access
rights to the object. Each bit set in the mask indicates an operation that can be executed by the holder
of the capability (those operations being present in the object). (Refer to figure 2.3)) Items being
referenced by the system have implied access rights for certain kernel operations. These implied
rights always allow the kernel to invoke the operations, but the ability to invoke those operations
cannot be passed Lo user processes.

Example Capability (64 bits)

777 S I

7

% ,///////// o L /?//5////

1001110100010000

Capability mask (32 bits)
1 = accessright, 0 = none

Type | Node ID | Crash Count | subsequencelD

Sysname (32 bits)

Figure 2.3 -- Capability structure

The existence of objects implies other capabilities. Any reference to an object also implies a reference
to the type manager for the object (deseribed in the next section), and to the system ohject manager.
The kernel has an implied capability consisting of the sysname and all access rights. This implied
capability may be used to invoke certain operations (e.g., abort, initialize), and it may be used when
managing the segment in which an object resides. These implied capabilities and references are all
used internally by the kernel and their existence is not seen by application software.

3. Objects

Objects are the fundamental data abstraction in Clouds. The rationale behind their use, and
specifically their use in Clouds, hus been deseribed in other papers (e.g., [Alle83al, |Alle83h],
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[McKe83], [Jone79)). Objects in Clouds are passive unlike Ejects in Eden [Alme83]; there are no
processes resident inside the object. This section deseribes the structure of objects and the manner in
which they are created, deleted, and in which operations are invoked.

3.1 Structure (types and managers)

Objects can be viewed as consisting of two parts: an object type manager and an object instance (the
“type” and "instance,” respectively). The type manager consists of procedure code which is allowed to
manipulate the object during crcation and deletion of the instance, a template of the uninitialized
instance, and certain other bits of information used by the kernel in object management. The type
manager operations are invoked to create and delete instances of the object type, move instances of
the object from one location to another, modify existing instances, and other related operations.

The type managers are objects in their own right: their associated type manager is part of the kernel
and is known as the object manager. There is an object manager in each sub-kernel which
communicates with all of the other object managers in the system. Figure 3.1 illustrates the logical
relationships amongst objecets instances, object types, and object managers.

Object instances consist of data comprising the object, procedure code which operates on the data
when operations on the object instance are invoked, access and modification information,
synchronization variables (if appropriate), and other information related to the object instance. As an
optimization, the procedure code for object instances can be stored in one single location (e.g., in the
type manager) and shared by all of the active instances. The object can be thought of as composed of
the code (which may include action-oriented operations such as commit and abort), permanent data,
and velatile data (such as heaps or stucks) which disappears when the object is not in use (see figure
3.2).

Each instance and cach type is stored as a segment (see section 6). When an operation is invoked on
an object instance, the kernel maps the code for the type manager and the instance into the virtual
address space of the invoking process. The object managers and segment system are responsible for
finding ohjects when presented with the capubility, and with mapping those objects into virtual
memory space. Thiswill be discussed in moredepth in section 3.4,

To create a new object, the user first desceribes the object type using an appropriate applications
programming language. This forms a template of the data structures which compose the data portion
of the object. The user also codes functions which operate on this data. These functions import, and
export arguments by value only: reference parameters are simulated by passing capabilities by value.

The procedural part of the object definition may contain special routines for synchronization of access
to the object, support of atomic actions, and initialization of new instances of the object. These
routines may be derived from a standard system library, or the user may program them specifically.
Every type manager contains functions for creating a new object instance, deleting an old object
instance, and for initializing a new object instance. Fach recoverable object must also contain
functions to implement beginning of action (BOA), abort, precommit, and commit.

Once the object implementation is written, it is compiled by the appropriate system compiler(s). The
result will be a file of code and data which is passed to the system object manager via a call through
the kernel interface. The object manager will change the type of the file to “type manager” and will
return an objeet capability to the new type manager.

To create an instance of an object, the uscr invohes the “ereate” operation on the type manager. The
calling process also specifies a storage partition () where the permanent version of the object
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OF POOR QU 7 "+*7



Technical Report GIT-ICS-84/09

7 TS II S oo /xx/.df/?//{/
,//4Permanent Data //
vy // i, f'/}///////////.-"f/f/ //
= \\ \\\\\\\\\\\\\ SO \
Volatlle Data \\

Operation 1 —)

Operation 2 —3»

Operation 3 —3»

Precommit

Commit

Yy

Abort

Figure 3.2 -- Picture of an Object

instance is to reside. The Lype manager uses this partition capability to create a new segment of Lybe
“client object.” The sysname returned by the segment system is used by the type manager to create
the capability returned to the user. The type manager also inttializes the object capability mask so
that all defined operations are enabled (e.g., if there are only 10 operations defined on the object, the
remaining 22 bits in the mask are not set),

Once the type manager has created a segment, it uses its data template and “init” function to
initialize the new object instance. This usually involves setting some data values to initial states,
initializing the heap for the object, resetting and defining synchronization variables, and creating a
skeleton VAM (Virtual Address Map -- see section 5) which will be used to map the object instance
into a process’s address space when needed.

When everything has been updated, the type manager returns the newly created capability to the
caller. Future references to the object instance will all be through this capability. The type manager
also increments an internal instance count which may later be used when deleting the type manager
(deleting the type manager while there are outstanding instances results in those instances becoming
“orphans” which cannot be used): the instance count is always an advisory value and no guarantee is
made about its accuracy.

3.3 Deleting Objects

Todelete anobjectinstance, the user invokes the “delete” operation contained in the type manager for
the object. This isanoperation on the capability to the object instance. Each object contains a pointer
to the type manager tor the object instance, and this pointer is used to find the type manager and
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Figure 3.1 -- relationship of instances and types

invoke the delete operation: this is an example of the use of an "tmplied” capability. To delete an
object instance the uscer must have the “delete” right, however.

Type managers are treated exactly like vbjects if the "delete” operation is performed on them. The
system object manager acts as the type manager for all user-defined type managers, and it is
responsible for performing the neeessary delete operations. Note that the object manager has the
option of checking the reference count inside the type manager and issuing some warning to the user
il it is non-zero. That is, it is possible to advise the user if that type manager might still have
outstanding instances in existence.

3.4 Invoking operations on instances

Anoperation is invoked on an instance by making a catl on the kernel with the capability to the object
instance, the operation number, and (optionally) a list of parameters to the operation. The kernel
object manager will first verify that the operation number is in range and that the capability mask
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contains the required access rights. If the attempted access is not valid, the process or action
attempting the operation is aborted (to prevent security violations and help contain errors).

Next, the segment system is presented with the object capability and requested to map the instance
into memory. If the instance name is currently known to the segment system, then a mapping is
already known. Otherwise, the segment system searches the directory of every locul active partition.
If the instance is found, then the mapping is performed and the segment is now “known” to the
segment managecr; future references to the segment will be to the segment on the local partition. This
search mechanism is deseribed in more detail in section 8 and in [Pitt85).

If the segment is not found locally, the segment system invokes a search module which attempts to
locate a copy of the segment elsewhere in the system. If unsuccessful, then the current action is
aborted since there is no way of deciding whether the desired object is locked, never existed, or simply
cannot be found due to some laiture in the system. If successful, the reference causes the object to be
made “active” on the system where it is found. From this point on, references to the instance will
continue to be mapped through the search module. Future references will be mapped to a system
where the instance is active.

Once the segment containing the objeet instance is made active, the segment containing the object is
read to find the name of the type manager for the instance. The type manager is then mapped into
memory in exactly the same manncer as the instance was mapped. The object instance may contain a
“hint” which can be used to speed this mapping: a hint can indicate the site where the type manager
was found when the object instance last referenced it.

After the instance has been mapped into the process’s virtual address space, the operation is invoked
with the appropriate parameters. Additionally, a capability to the object control block for the object is
stored in the "current object” field ol the process control block for use by the kernel, if necessary.

3.5 Cloning Objects

FFor enhanced availability and speed of access, it may be practical to have redundant copies of type
managers located at different spots around the system. Thus, if a machine goes down and it makes a
type manager inaccessible, it mayv be possible to map future references to a copy of the type manager
located on a still-active machine: these copies are referred to as clones.

Currently, only immutable objects may be cloned. This means that only type managers may be
cloned, since they contain unchanging code and data templates. The object manager has a copy
operation which can be invoked to clone i type manager.

References to cloned type managers still occur through the standard capability mapping mechanism.
All clones will have the exact same name and are completely interchangeable. Any reference can be
mapped to any available type muanayer,

When a type manager is cloned, its reference count field is marked as “not valid” both in the original
and in the clone. When a delete operation is performed on the type manager, one of the clones will be
deleted. The application code may choose to warn the user that the type manager is a cloned object
and there may be other copies in existence. The code may further note that Lthere may be undeleted
object instances which could be rendered useless by removal of the lust clone.

OidGINAL PAGE 15
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4. Processes and Actions

4.1 Processes

The basic instrument of activity is the process. A Clouds process is similar to processes used in other
systems. Each process represents an identifiable sequence of operations. Each process is represented
by a unique process control block or PCB. The PCB for a process is used to store the contents of the
machine registers when the process is not active. The PCB also holds pointers to the process’s stacks,
pointers to the structures currently defining the virtual memory space of the process, and a pointer to
the object control block of the object that the process is currently accessing, if any.

A process is created when the kernel process manager receives a request for a new process. Each
request specifies an activity that the newly-created process is to begin, and a pointer to an activity-
specific block of parameters for the process to use. The process manager allocates space in its internal
store for a new PCB and a new set of memory maps (see section 5 for more details). The PCB and
memory maps are initialized, and the process stacks are also initialized. The system scheduler object
is invoked with a capability to the process and the process is added to the ready list for subsequent
dispatch and activation. A capability for the process is also returned to the activity which requested
the creation of the process. That capability can be used to halt or kill the process, change its priority,
or modify other operating characteristies of the process.

When a process has completed its assigned tasks it returns to the kernel process manager and its PCB
and memory maps are reclaimed for use in building new processes. The process may also be halted
and reclaimed by the process manager upon request. Such a request must contain a capability for the
process and have the necessary access rights.

There is only one process running on a machine at any one time. The other processes in the system at
that machine are either linked into the ready list or they are linked into the wait list associated with
some synchronization item. The ready ist is a list of processes awaiting a turn at the processor. The
ready list is maintained in a scheduler object according to the scheduler’s queuing algorithms. The
process dispatching mechanism for the virtual machine invokes operations on this scheduler module
to obtain the next ready process or to enqueue a process (make it ready). The scheduler object is not,
strictly speaking, a purt of the kernel, There may be one scheduler for many or all of the machines in
a Clouds system, or there might be might be one per machine each using a different queuing
discipline on their ready lists. This enables the system to change scheduler modules and disciplines
without stopping so us to adjust to changing configurations and workloads.

The kernel supports traditional counting semaphores, single and multi-mode locks, event tickets, and
timed events as means of synchronization. The process manager can create new instances of each of
these items upon request. Fach synchronization item is associated with a wait list that is a list of
processes blocked on that variable. When a process blocks on one of these items it is removed from the
rcady list and linked into the end of the wait list associated with the item. A pointer to the
synchronization variable is placed into the PCB of the process for later reference. When a process is
unblocked, it is unlinked from the wait list and added to the ready list via an invocation of the
scheduler.

1.2 Actions
Actions are sequences of operations which occur atomically. That is, lo an outside observer, the
operations performed by an action oceur all at onee or not at all.  Actions in Clouds have been

discussed extensively in [Alle331 Bricfly, in Clouds, actions are related to processes in that the
operations associated with an action must be performed by one or more processes. The kernel object
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manager is responsible for maintaining information about actions. It keeps a record of all objects
visited by each action during the lifespan of the action. It handles the commit and abort protocols
associated with actions. It is also responsible for ensuring that only processes operating in the context
of actions are allowed to touch recoverable objects.

When the object manager receives a request for a new action it first obtains a new worker process
from the process manager. It enters the sysname of the process into an active action descriptor, and
assigns an action name to the process. That action name is copied into the PCB of the process, and is
used to form a new capability to the action. This capability is then passed back to the requester. The
requester is not given the capability for the process; all requests to the process manager are made on
the action and through the object manager.

While an action is active, the object manager notes every recoverable object touched by the action and
enters the sysnames of those objects into the action descriptor. Should the action abort itself or be
aborted by some other process holding a capability to the action, the object manager will (eventually)
invoke the "abort” operation on cach recoverable object listed in the action descriptor. When the
action attempts to precommit or commit, the object manager will invoke the corresponding operations
on each of the objects listed in the action descriptor. Once an action aborts or commits, its action
descriptor is deallocated and the process manager is called to reclaim any processes associated with
the action; by definition, an action can perform no more operations afler it has aborted or committed.

The synchronization of actions and multiple processes acting on behalf of the same action is left
entirely to each object accessed and o the object manager. The kernel provides no direct support for
deadlock handling. These can be resolved through the use of timeouts - each request to create an
action is accompanicd by a value specifving a maximum completion time. If the action does not
complete within that time intervad then it is aborted by the object manager.

Clouds also supports subactions. These act like actions in virtually every respect except that their
effects are not permanent until all of their top-ltevel ancestor actions commit. An action is not allowed
to commit until all of its subuactions have completed by aborting or committing. When an action
aborts, all of its subactions are also aborted. The algorithms defining the interaction of actions and
subactions are described in JAHe83], as are the algorithms for dealing with various kinds of network
and communications failures,

5. Virtual Memory

5.1 Mapping Virtual Memory

The virtual memory system maintains the binding of physical memory locations to references made
by executing processes. In particular, we ave interested in the mapping of locations inside Clouds
objects in such a manner that we can invoke the operations on objects and modify object instances.
Additionally, we wish to support shared objects, an embedded kernel, and efficient management of
storage coupled with correct operation of the action/object mechanisms. These constraints have made
a major impact on the form of the underlying virtual memory structure. The resultant structure
bears some surface similarities to the virtual memory structure of systems such as HYDRA [Wulf74]
and Accent [Rash81].

Before describing the structures used to support the virtual memory system, we present the address
space as seen by atypical process, and describe the utilization of that space. The virtual address space
can be thought of as composcd of three portions -- object space, per-process space, and system kernel
space (see ligure 5.1). The object space contains the code and data associated with the currently active
object. this may include exceutible code from the object type, data items and heaps associated with
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Object Space: PO Per-process Space: P1 B System Address Space

(objects, files, etc.) (stacks, etc.) (shared kernel)

<— Low addresses High addresses ->

Object code | Objectdata | Unused | Heap | File1 | Unused [File2

Example contents of object space

Figure 5.1 -- A process’s view of its address space

the instance of the object, and onc or more “windows” into files being referenced by the active object.
On the Vax, this space corvesponds to the PO page map.

The per-process space contiins items that survive object invocations and returns. That is, it contains
items which arce not specifically associated with any active objects but are instead associated with the
active process. This spuce contains all of the user stacks und static data not associated with any
object. On the Vax, this space corresponds to the Pl page map. -

The system kernel space is the same for every process. Shared items such as the virtual memory
tables and process control blocks reside in the system space. The system space is also where most of
the code which implements the kernel resides. On the Vax, this corresponds to the area mapped by
the system page map. '

Each of these address spaces is mapped in a similar manner. Refer to figure 5.2 for the following
discussion of common features.

Contiguous, related addresses in a process” address space are mapped together as one “chunk.” For
example, all the executable code in an ohject type could be mapped as one chunk, as could an entire
user stack, or the entire contents of a file. Fach "chunk” is represented as an entry in a Virtual
Address Map or VAM. There is one VAM deseribing system space, one unique VAM for each process’
per-process space, and one VAM for cach active object. These VAMs are referenced, respectively, by a
pointer in the system control block, by a pointer in each PCB (process control block), and by a pointer
in each OCB (object control block).

Each VAM has a header which points to a hardware page map. This pointer is loaded into the current
process’ page map register to effect the mapping indicated. That is, the page map table (PMT), -
contains the hardware defined entries necessary to define the virtual memory space in the physieal
page frames available.

The VAM hcader also contains @ count tup to 8 in the initial implementation) of valid VAM entries
following the header. Fuch VAM entry defines a "chunk” of the virtual address space. A VAM entry
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Figure 5.2 -- Common Features

contains the starting and ending page numbers of the process address space described by the entry. It
also contains a pointer Lo a segment control block or SCB, and the capabilities that this process/object
has in relation to that segment (e.g., read-only, read/write, delete, ete.).

Fach SCB defines a currently active scgment (segments are described more fully in the next section).
The SCB indicutes the portion ol the real segment which is mapped. [For instance, if the process is
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accessing only a few pages of a multi-megabyte file, there is no need to map the whole file segment
into the address space. Instead. the SCB would contain the beginning and ending page numbers of the
section that was being accessed. (The VAM entry would indicate the addresses within the virtual
address space where that segment would be mapped.)

The SCB also contains pointers to all VAM entries referencing the segment (the usage list), and a
pointer to a page location list or PLL. There is one entry in the PLL for each page described by the
SCB. Each PLL entry indicates the status of that segment page (onc of: resident & locked, resident &
unlocked, being brought in (in-transit), being removed (out-transit), on the pre-page list, non-resident
and in the source partition image, non resident and on the paging partition, or not vet defined). The
PLL entry also contains a location which is used in combination with the status to find non-resident
pages and remove resident pages. The frame number of resident pages is also indicated in this list.

The relationship of these structures to one another may be made clearer by presenting a brief scenerio
of handling a page fault. Suppose an active process gets a page fault in its PO (object) space. The page
fault handling code locates the appropriate VAM by using the pointer located in the OCB of the
currently active object (as noted above, a puinter to the current OCB is in the PCB of the current
process). Next, the fault code compares the page number of the fault with the ranges presented in
each VAM entry. When the appropriate entry is found, its pointer is used to locate the SCB which
describes the missing page. The offset from the starting page number in the VAM entry determines
the relative offset in the segment which s needed.

The pointer to the page location list in the SCB is used next. The fault code uses the relative offset to
index into the PLL and obtain an entry corresponding to the missing page. Further action is
determined by the current status of the missing page:

the page is resident. This implies that the page was being brought in at the time of the fault and
has since arrived, or else the page is also in use by some other process and the presence of the page
has not vet been indicated in this process's page map table. In either case, the frame number is
taken from the PLIL and inserted into the proper place in the PMT pointed to by the VAM. -

the page is undefined. This implies unintiadized data space, such as in a heap or stack. An empty
frame is filled with zevos (for error containment and seeurity), and its frame number is placed into
the appropriate piaces within the PLL and the PMT,

the page is non-resident; Based on the location information in the PLL, and the segment
information present in the SCB, a request is made to read the missing page into an empty page
frame. The status of the page in the PLL s changed to "in-transit” and the process waits until the
page arrives.

the page is pre-paged. This implies that the page was added to the pre-page list as a candidate for
removal. The page is removed from the pre-page list and its status is changed back to "resident.”
The PMT is updated appropriately.

the page is in-transit. This implies that some other process has already requested the page. The
process waits until it arrives: the requesting process will perform the mapping and this process
will awaken to find the page vesident.

the page is out-transit. This implics that the page is currently being written out to secondary
storage to free the frame in which it was residing. Nothing can be done about reading the page
back in until a stabilized image is present on the secondary storage. Therefore, the process waits
until the transfer out of memory is complete. When the process is awakened, it wili mark the page
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as resident and not modified since the resident version corresponds to the version in secondary
storage, and then continue, or it will bring the page back in.

In each case, locks are used to ensure consistent results during concurrent accesses.
5.2 Managing Physical Page Frames

In order to efficiently provide empty page frames to satisfy page faults, it is necessary to keep track of
the state and use of each page frame. This is accomplished through the use of the physical page table
or PPT. The PPT is organized as an array with the index of each clement corresponding to a physical
page frame; PPT entry 5 corresponds to frame 5, and so on.

Each entry in the PPT contains information about the status of the page frame, and links to other
page frames in the same state. This is accomplished by putting forward and backward link fields in
each PPT entry; each link corresponds to the index of the next (or last) PPT entry in a doubly-linked
chain of similar entries. There are four such chains threaded through the PPT: the active frame list,
the pre-page frame tist, the free frame list, und the locked frame list,

The active frame list contains entrics referring to page frames which are currently occupied and in
use. As pages are brought in in response to page taults, they are added to the end of this list. Each
entry in this field also has a pointer to an SCB describing the page, and an offset field which can be
used to locate the page’s entry in the PLL associated with the SCB.

The free frame list is simply a list of currently availuble page frames. Requests for empty page
frames are satisfied with the entries in this list. We assume that the list is never empty; if necessary,
we will suspend all other processes and run a page reclaimation process to keep the number of [ree
pages above a minimum threshold.

The locked frame list contains entries corresponding Lo pages which cannot be thrown out of memory.
This includes pages involving active device /0, pages containing critical code or data (like the PPT!),
and pages which are being kept from paging due to performance considerations.

The pre-page list contains entries which are candidates for removal from memory , thus freeing those
frames. The page reclamation process will remove entries from the head of the active frame list and
add them to the tail of the pre-page list, while at the same time tracing down all PMTs which
reference this page and marking it us nonresident. Pages are removed from the head of this list and
added to the free list after their contents have been written out to secondary storage, if necessary.
Pages referenced before they reach the head of the pre-page list get reactivated and moved back onto
the active frame list. This whole mechanism implements a form of FINUIO (First In, Not Used, First
Out) paging algorithm. (Note: if the Vax hardware supported a "referenced” bit in its page tables, this
could be avoided!)

6. Secondary Storage, Partitions and the Segment System

6.1 General Structure and Terms

In order to present a conzistent, uniform means for the kernel to reference items requiring storage,
every item on the system is viewed as having a sccond type known as segment. Segments are
basically untyped units of storage which can be read, written, copied, deleted, and moved by kernel
code. Paging, whether ofa tile, o process space, or an objeet, is always accomplished with the same set
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of segment operations. Copying of items from one place to another is always accomplished with
segment operations, and so on.

A segment is active if it has been recently accessed or was present in memory before being referenced.
The SCB for the segment indicates which processes are referencing it, and which partition driver (see
below) needs to be invoked for operations on the segment. These SCBs are allocated and initialized
whenever a segment is made active (i.c., referenced and not currently active). The Active Segment
Hash Table hashes segment capabilities into pointers to the corresponding SCBs.

Fach segment representing a permanent item has a version resident on some partition. A partition
corresponds to some block of space available on a secondary storage device. In general, a partition
could exist on a disk, on a tape, or in a block of special memory. Usually, a partition will be blocks of
space on disk device(s).

A segment on a partition is composed of a segment header and a data area. The segment header
contains information about the segment, such as the defined type of the segment (e.g., client object or
file), a capability to the type instance for this segment, time of creation, and other such information.
The data space is the actual contents of the segment.

Partitions are composed of aopartition header which describes the partition (record size, extent, ete.), a
free list whose format is partition-dependent, a directory, directory entries, and data records
containing the segments. This structure ts more fully described below.

Segments are recoverable, non-recoverable. or temporary (volatile). Recoverable segments represent
items which may be accessed only by actions, while non-recoverable and temporary segments may be
accessed by actions or processes. Operations on objeets of type segment are generally not available to
application processes but are alwayvs available to kernel code. Any process with the correct
capabilities may read any objecet, whether it is represented as a non-recoverable or recoverable
segment. Temporary segments “disappear”™ on machine crashes and are used for paging space and
volatile data structures. -

Because of the constraints necessary to ensurce the recoverability of objects and to support atomic
actions accessing those objeets, partitions are not allowed to cross device boundaries. That is, each
partition must be fully contained within one device. It is possible to locate the directory and free list
for a partition on a device different from the directory entries and data, but this adds a great deal of
complexity and delay in the operation of the partition,

Volatile and recoverable segments can be mixed freely within a partition, but some partitions will not
be capable of supporting recoverable segements and will be so marked in the partition header. For
instance, partitions on a tape are not able to support recoverable objects. In general, a partition
supporting recoverable entries must reside ona device which:

1) allows random reads and writes:
2) does not perform internal buffering of writes except by application choice;
3) provides atomic single-record writes.

Condition 3, above, may be relaxed by use of replicated writes to other devices: duplication of writes to
implement stable storage is a standard method when dealing with potentially unstable devices and
critical applications{Lamp81].

Partitions are added to the system by mouwnting. The operation Lo mount a partition involves

mapping a partition driver to a device driver and scheduler (which may alrcady be active with
another partition on the same device). This relationship is shown in figure 6.1. The device driver
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Figure 6.1 -- A mounted partition

module is actually aprocess which pertorms operations on the device according to requests provided
by the device scheduler module. The driver code s written to take full advantage of individual device
characteristics and requirements. This may include implementation of scatler/gather operations,
automatic retrics of erroneous reads, and <o on.

The device scheduler module 15 designed to take requests from partition drivers and then provide
them to the device driver in some orderly, efficient manner. The scheduler module may also contain
space to provide bulfered reads and writes, und manage these buffers.

Fach partition driver accepts requests to read or write a record of a segment in the partition. These
requests are then mapped into the appropriate operations on the free list and directory structure, and
reformatted into request packets to the device scheduler. The partition driver maps the segment
capability into an absolute address in the device based on the segment offset, directory entry, and
partition header. Requests to partition drivers may also get modified due to shadowing and recovery
considerations. Some rvequests such as commits and deletes may require that the free list and
directory be read or written as well.

Every partition supports operations to create a segment, delete a segment, alter a segment (change its
type or maximum allowable size), read a page from a segment, write a page Lo a segment, and truncate
(shorten the working size) of the segment. Fach segment is created with a maximum allowable size
beyond which it is not allowed to grow, Operations to create a segment or alter a segment require an
appropriate capability to the partition as well as the seement involved.

6.2 Recoverable Segments

[n addition to objects, pavitionz need Lo support recoverubility for directory structures and the free
lists used in the management of the partition itself, The Clouds storage management organization
achieves this goal of recoverability by cmbedding portions of the free list and directory management
in the management of the recoverable seaments, This system also allows the shadowing and paging of
recoverable objects.

Consider the partition logical organization as shown in figure 6.2. The partition header is always
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Figure 6.2 -- Partition Organization

found in record zero of the partition. The header contains information about where to find the free list
and directory for the partition, and whether the partition supports recoverable segments. The exact
form of the free list is not really important as long as it is possible to map it into memory; a bit map is
probably the most reasonable form for a disk partition.

The partition directory consists of segment names (sysnames) and the record number within the
partition which contains the directory entry for that segment. The partition directory may be many
records long, and could be organized as some form of sorted tree rather than as a simple list. To
simplify the discussion, we assume here that the directory is simply a linear list of name/address
pairs.

Each directory entry consists of name and type information, and a list of the records which make up
the segment. This list could also be many records long. Each entry in the list consists of a flag field
and a record address which points to the corresponding data record within the segment. In addition to
this information, the header contains a tield which could contain a pointer to a shadow version of the
segment.
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When the partition is mounted, the code for the partition driver checks the directory entries to
discover uncommitted and precommitted entries (as described shortly). If any such entries are found,
their processing is completed. Then a volatile, in-memory copy of the free list is made. The partition
directory may also be processed Lo provide a list of names of objects present on this partition.

When a read reference is made to a recoverable segment in this partition, it is only necessary to use
the directory entry to locate the appropriate data page and read it into memory. If the reference is a
write reference, then it is necessary to shadow the segment until the referencing action either
commits or aborts. Note that in the following description the operations undertaken are all done
internal to the partition driver and the calling action never sees anything other than a consistent
view of the object.

When the first write to a recoverable segment is done by an action, the partition driver makes a copy
of the directory entry on the partition. Fach data record pointer in this shadow entry is initially the
same as the corresponding pointer in the permanent version. Subsequent writes will be done to newly
allocated records containing copies of the corresponding permanent data record. The shadow directory
entry is changed to point to these new shadow data pages. After the shadow is ereated, the permanent
version directory entry is changed to include a pointer to the shadow and a status flag indicating that
it is being shadowed. If a crash occurs unytime between this point and the time the shadow is
committed, the code which checks the directory during partition mount will discover the shadow and
remove the pointer.

The records allocated for the shadow segment are all taken from the volatile free list held in memory.
The actual free list on the partition is not updated exceept during the actual commit of the shadow, so
any fatlure simply loses the volatife free list and the records occupied by the shadow remain marked
as free inthe permanent free list on the partition.

If an abort occurs it is necessary to remove the pointer in the directory entry for the permanent
version of the object and mark all of the records of the shadow as “free” in the volatile free list. When a
precommit occurs, the status tlag in the permanent version is updated from “being shadowed” to
“precommitted shadow present.” If a erash occurs before a commit or abort, the code which mounts the
partition will discover this precommitted segment and then determine whether to complete the
commit or abort based on information from other machines in the net.

When a commit occurs, the status of the shadow is changed to “permanent” and its shadow pointer is
sct to point to the old permanent version (this can be done ina single record write). Next, the partition
directory is written to point to the new permanent version. Next, the permanent free list is updated to
indicate that the records used in the new permanent version are unavailable and that the records
used by the old permancent version are free: the volatile version in memory is likewise updated.
Lastly, the pointer in the dircectory entry for the new permanent version is set to null. If a crash oceurs
at any point in this processing the commit can be continued from the point of failure when the
partition is next mounted.

This scheme assumes that single record writes to the partition are atomic (i.¢., uncorruptable during
a crash). It also assumes that crashes oceur infrequently and that some extra processing when a
partition is mountled will not be a difficulty. Using this scheme, aborts and precommits require a
single record write. Creation of the shadow requires two record writes in addition to the writes to the
data portion of the segment. Commits require approximately three record writes beyond those
normally needed to update the free list. Some of these writes may be buffered without affecting the
resulting consistency. Thus, this provides an cfficient means of supporting recoverable segments and
partition structures. Similar alyorithms cxist for creating and deleting recoverable segments, and for
operating on non-recoveruble partitions. All of these algorithms are discussed in more depth in
{Spaf84] and [Spaf85].
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7. Network Communications and RPPC

7.1 Network communications

Fach machine in the Clouds multicomputer may be connected to one or more other machines in the
system by any number and kind of communication channel. The nature of the connections is also
immaterial, although it should be obvious that a minimum number of connections of sufficient
bandwidth will enhance ultimate performance. The prototype system will have the individual
processors connected by a common high-speed backbone and by an Ethernet. Multiple Ethernets and
asynchronous communications lines may also be accommodated.

Communication between individual subkernels is handled by a replicated communications manager,
one per subkernel. Each subkernel makes communications requests through the single interface
presented by its copv of the communications manager. Based on the destination and nature of the
request, the communications manager chooses the communications channel(s) over which to send the
message. The communications manager determines a transmission channel based on message size,
message priority, current communications conliguration and ervor counts, and load information. A
fixed-size header is prepended to the data portion of the message, and the communication is
transmitted over the appropriate medium.

Note that all applications, including the RPC mechanism, define their own protocol for message
traffic. The communications manager provides facilities for acknowledging receipt of messages, and
for receiving (possibly prioritized) replies to messages. Other than the fixed header block prepended
to cach message, the communications manager makes no interpretation of the data portion of any
message.  This allows the operating system and applications software to make direct use of the
communications system in whatever manner best suits them.

There is no guarantee that messages are delivered by this communications system to the appropriate
software on a remote node. Acknowledgements must be done at a higher level, if desired; the
communications driver only supports hardware-level acknowledgements. There are also no
guarantees of delivery order or assurances against duplication during transmission. The only
assumptions being madc in the design of the Clouds communications system are:
-- that it is extremely unlikely that the network will be partitioned into isolated segments;
-- that if a message arrives at a machinge, it is possible to determine if it arrived uncorrupted;
-- messages arrive at their destination in small, finite time or else are lost forever;
-~ the overall probability of corrupted or lost messages is small,

Incoming messages arc delivered to the communications manager by individual device drivers and
signalled via device interrupts. The communications manager determines the nature of the incoming
message and passes it to the appropriate object or process within the subkernel for further action. The
communications manager does no protocol cheeking whatsoever other than determining that the
message arrived intact (usually indicated by @ hardware status code) and that the message was
actually destined for this subkernel. It may use the header information present in each message to
update its own internal tables.

The communications manager is made aware of communications channels via an activate operation
similar to a partition mount operation. The communications manager is invoked with a capability to
the physical device driver for the channel, and a set of parameters which describe the speed and
possible connectivity of that channel. This information is used to help the manager determine when
to use that channel for communications.  As messages go out and come in over that channel, that
information is updated within the internal tables of the communications manager. The first message
sent out over an activated channel is a "I'm here, who's there?” message. This is to inform other

-19-




Technical Report GIT-ICS-84/09

systems of the availability of communications over this path, and the responses ellicited are used to
identify potential destinations for future messages.

7.2 Remote Procedure Calls

One of the operations available on the communications manager is that of the remote procedure call
on an object. Normally, this operation is invoked by the object manager when an invocation is
attempted on an object which is not present on this machine. The object manager therefore reformats
the attempt into an RPC operation on the communications manager. A capability to the object, an
operation number and a pointer to a parameter block (usually just the current stack frame of the
caller) are the arguments to the call on the communications manager. The communications manager
constructs a message consisting of the capability and operation number, and a copy of the parameters
to the object (remember that all parameters in object invocations are passed by value). This message
is then sent out over the appropriate communications channel(s) and the calling process is blocked
until a reply is received. A unique identifier is associated with the message to identify the response.

When the RPC message is received at the site where the object currently resides, the communications
manager requests a cohort process from the process manager. The cohort is dispatched with a copy of
the object capability and operation number, and with a pointer to the copy of the parameter block
which comprised the remainder of the message. If the request was on behalf of an action, the eohort
assumes the action identity of the calling action via a call to the object manager. Next, the cohort
copics the parameter bloek to its stack and invokes the object as if the call had originated locally with
the cohort. When the invocution returns to the cohort, it calls the communications manager to
formulate a reply to the original request. The reply is constructed with the values and error codes
returned by the invocation, if any, and with the unique identifier provided with the incoming RPC
message. This reply message i< then sent out and the cohort is reclaimed by the process manager.

When the reply message is received at the original machine, the communications manager alters the
state of the blocked requesting process to indicate the location of the reply message, and then the
process is unblocked. It retrieves the reply information, alters its stack and registers as indicated by
the reply, and then returns. The whole process of call and return looks exactly like a local (although
possibly slow) invocation.

8. Object Searching and Invocation

One of the most important {eatures ol objects in Clouds is that every invocation embodies an implicit
scarch. No assumptions are made about the location of objects. In fact, it is entirely possible that
objects may move from machine to machine between invocations. The implicit search also allows
more dynamic use ol cloned objeets and alternate communications pathways.

When an object is invoked, the object manager searches the Active Object Table for an entry
matching the name of the object. If such an entry is not found, then a new entry is allocated and added
with a set of default values. If the naune is found in the table, then the entry contains a pointer to one
of two things: an OCB (Object Control Biloek) or a search module. If the pointer is to an OCB, then the
object is present on this machine. and is cither currently active or was just recently active. In either
case, the OCB contains all of the necessary information to bring the object into memory and map it
into the virtual address space of the requesting process.

If the entry for the object is a pointer 1o the default (initial) search module, then all of the local

partitions are scarched to see if the object is present locally. I it is found on a local partition, then an
OCB is allocated and initialized and the invocation proceeds as above. If the object is not found
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locally, then the pointer is altered to point to the network search module and that module is then
activated.

The network search module uses available information about the configuration of the network and
the available communication paths to scek the object on some set of remote machines. This search
operation may actually be done as a “search and perform” operation to save time, with the parameters
for the RPC included with the search message. If a remote site receives such a search message, it
attempts to find the object locally. I the object is found, it is made active locally and the operation is
performed as a normal RPC.

If the network search module fails to locate the object on any remote machine it returns a simple "not
found” indicator to the requesting process, aborting it il it is an action. It is not possible to determine
at this point whether the object does not exist, exists on a processor which is currently not
communicating with this machine, or whether the object is currently not available due to action
visibility constraints.

_ Object
B »|ocB |-~ Instance
Il SN Network -f->|ocs
~-») Search fp-—'—- —— =P AN
—-4---"" | Module ‘4
Object
: Instance
I D »locsl-» Ob]eCt
Instance
Active Object Table
Active Object Table Machine Machine “B”
Machine “A Boundary

Figure 8.1 -- Locating an ohject

The search strategy may well be optimized somewhat through the use of hints. Once an object has
been found and made active it is possible to include a hint with the entry in the active object table on
the calling machine. IPuturce references to the object can be tried first on the hinted-at machine since
that is the last known location of the object. [t may also be possible to derive hints in other ways: this
area will be the subject of further rescarch by the Clouds group. [ Pitts85)

9, Kernel Interface

Conceptually, the kernel interface extends across machine boundaries and exists on each processor
within the Clouds system. In actuality, the interface is replicated on cach machine. In our prototype,
the interface consists of service calls which change the processor mode to the kernel state and then
examine the arguments for validity. Kernel calls (including object invocation) use a protected per-
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user stack to hold return state information. Calls by code within the kernel to other parts of the
kernel are done directly and avoid the overhead of a system trap.

In general, cach kernel operation requires one or more capability parameters specifying what is to be
done. The kernel interface maps those capabilitics to simpler operations to be performed by specific
subkernels. Most kernel operations are done by actions dispatched by the interface. This allows better
error containment and prevents kernel operations from being only partially completed. The actions
so spawned operate independently of the requesting process or action. This mechanism helps simplify
the design of the distributed aspects of the kernel, especially when dealing with kernel services being
performed on remote systems which may possibly fail in the midst of the operation.

As an example, consider a request to the kernel to move a file from one partition to another. The
request to the kernel would include a capability to the file and a capability to the destination
partition. The request does not require the specification of any specific machine names or locations.
The kernel will locate the file and parition based on the provided capabilities. The movement of the
file will occur as part of an action, with the copy being done with segment operations to read and write
pages of the {ile. Should the communications channel or one of the processors fail during the transfer,
the action will be aborted and the partially transferred file will be erased from the destination
partition. If the destination partition does not have enough space for the lile, the action will abort and
the space will be freed. Other errors act in a similar manner with appropriate error codes being
returned to the caller, il possible.

This method of structuring the interface also allows the system to be expanded to other processors
which may employ a different underlying architecture. As long as it is possible to create an action
somewhere in the Clouds system then the calls through the kernel interface can be attempted at some
location: the operation of the kernel interface is independent of the focation of the requester since all
location information is contained within the capabilitites passed as arguments.

10. Conclusion

This” paper has presented an overview of the internal structure of the Clouds kernel. This
presentation has also given an indication of how these structures will interact in the prototype Clouds
implementation. Many specific details have yet to be determined and await experimentation with an
actual working system.
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